001031803 001__ 1031803
001031803 005__ 20250310131242.0
001031803 0247_ $$2doi$$a10.1109/IGARSS53475.2024.10641976
001031803 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05823
001031803 0247_ $$2WOS$$aWOS:001316158501095
001031803 037__ $$aFZJ-2024-05823
001031803 1001_ $$0P:(DE-Juel1)187558$$aSharma, Surbhi$$b0$$ufzj
001031803 1112_ $$aIGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium$$cAthens$$d2024-07-07 - 2024-07-12$$wGreece
001031803 245__ $$aEnhancing Land Cover Mapping: A Novel Automatic Approach To Improve Mixed Spectral Pixel Classification
001031803 260__ $$bIEEE$$c2024
001031803 300__ $$a1017-1020
001031803 3367_ $$2ORCID$$aCONFERENCE_PAPER
001031803 3367_ $$033$$2EndNote$$aConference Paper
001031803 3367_ $$2BibTeX$$aINPROCEEDINGS
001031803 3367_ $$2DRIVER$$aconferenceObject
001031803 3367_ $$2DataCite$$aOutput Types/Conference Paper
001031803 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1730978104_30533
001031803 520__ $$aThe increasing availability of high-resolution, open-access satellite data facilitates the production of global land cover (LC) maps, an essential source of information for managing and monitoring natural and human-induced processes. However, the accuracy of the obtained LC maps can be affected by the discrepancy between the spatial resolution of the satellite images and the extent of the LC present in the scene. Indeed, several pixels may be misclassified because of their mixed spectral signatures, i.e., more than two LC classes are present in the pixel. To solve this problem, this paper proposes an approach that explores the possibility of using simple but effective unmixing techniques to enhance the classification accuracy of the mixed spectral pixels. The results showed that several pixels, including buildings and grassland LC, are typically classified as cropland. By unmixing their spectral content, it is possible to extract the most prevalent class within the area of each pixel to update the classification map, thus sharply increasing the map accuracy. These promising preliminary results indicate the potential for broader applicability and efficiency in global LC mapping.
001031803 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001031803 536__ $$0G:(EU-Grant)956748$$aADMIRE - Adaptive multi-tier intelligent data manager for Exascale (956748)$$c956748$$fH2020-JTI-EuroHPC-2019-1$$x1
001031803 536__ $$0G:(BMBF)16HPC008$$aVerbundprojekt: ADMIRE - Adaptives Datenmanagement für das Exascale-Computing (16HPC008)$$c16HPC008$$x2
001031803 536__ $$0G:(DE-Juel-1)DEA02266$$aEUROCC-2 (DEA02266)$$cDEA02266$$x3
001031803 588__ $$aDataset connected to CrossRef Conference
001031803 7001_ $$0P:(DE-Juel1)178695$$aSedona, Rocco$$b1$$ufzj
001031803 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b2$$ufzj
001031803 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b3$$ufzj
001031803 7001_ $$0P:(DE-HGF)0$$aParis, Claudia$$b4
001031803 773__ $$a10.1109/IGARSS53475.2024.10641976
001031803 8564_ $$uhttps://juser.fz-juelich.de/record/1031803/files/Surbhi_Sharma_IGARSS_2024.pdf$$yOpenAccess
001031803 8564_ $$uhttps://juser.fz-juelich.de/record/1031803/files/Surbhi_Sharma_IGARSS_2024.gif?subformat=icon$$xicon$$yOpenAccess
001031803 8564_ $$uhttps://juser.fz-juelich.de/record/1031803/files/Surbhi_Sharma_IGARSS_2024.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001031803 8564_ $$uhttps://juser.fz-juelich.de/record/1031803/files/Surbhi_Sharma_IGARSS_2024.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001031803 8564_ $$uhttps://juser.fz-juelich.de/record/1031803/files/Surbhi_Sharma_IGARSS_2024.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001031803 909CO $$ooai:juser.fz-juelich.de:1031803$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001031803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187558$$aForschungszentrum Jülich$$b0$$kFZJ
001031803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178695$$aForschungszentrum Jülich$$b1$$kFZJ
001031803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b2$$kFZJ
001031803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b3$$kFZJ
001031803 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001031803 9141_ $$y2024
001031803 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031803 920__ $$lyes
001031803 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001031803 980__ $$acontrib
001031803 980__ $$aVDB
001031803 980__ $$aUNRESTRICTED
001031803 980__ $$aI:(DE-Juel1)JSC-20090406
001031803 9801_ $$aFullTexts