001     1031803
005     20250310131242.0
024 7 _ |a 10.1109/IGARSS53475.2024.10641976
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05823
|2 datacite_doi
024 7 _ |a WOS:001316158501095
|2 WOS
037 _ _ |a FZJ-2024-05823
100 1 _ |a Sharma, Surbhi
|0 P:(DE-Juel1)187558
|b 0
|u fzj
111 2 _ |a IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium
|c Athens
|d 2024-07-07 - 2024-07-12
|w Greece
245 _ _ |a Enhancing Land Cover Mapping: A Novel Automatic Approach To Improve Mixed Spectral Pixel Classification
260 _ _ |c 2024
|b IEEE
300 _ _ |a 1017-1020
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1730978104_30533
|2 PUB:(DE-HGF)
520 _ _ |a The increasing availability of high-resolution, open-access satellite data facilitates the production of global land cover (LC) maps, an essential source of information for managing and monitoring natural and human-induced processes. However, the accuracy of the obtained LC maps can be affected by the discrepancy between the spatial resolution of the satellite images and the extent of the LC present in the scene. Indeed, several pixels may be misclassified because of their mixed spectral signatures, i.e., more than two LC classes are present in the pixel. To solve this problem, this paper proposes an approach that explores the possibility of using simple but effective unmixing techniques to enhance the classification accuracy of the mixed spectral pixels. The results showed that several pixels, including buildings and grassland LC, are typically classified as cropland. By unmixing their spectral content, it is possible to extract the most prevalent class within the area of each pixel to update the classification map, thus sharply increasing the map accuracy. These promising preliminary results indicate the potential for broader applicability and efficiency in global LC mapping.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a ADMIRE - Adaptive multi-tier intelligent data manager for Exascale (956748)
|0 G:(EU-Grant)956748
|c 956748
|f H2020-JTI-EuroHPC-2019-1
|x 1
536 _ _ |a Verbundprojekt: ADMIRE - Adaptives Datenmanagement für das Exascale-Computing (16HPC008)
|0 G:(BMBF)16HPC008
|c 16HPC008
|x 2
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 3
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 1
|u fzj
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 2
|u fzj
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 3
|u fzj
700 1 _ |a Paris, Claudia
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1109/IGARSS53475.2024.10641976
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1031803/files/Surbhi_Sharma_IGARSS_2024.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1031803/files/Surbhi_Sharma_IGARSS_2024.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1031803/files/Surbhi_Sharma_IGARSS_2024.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1031803/files/Surbhi_Sharma_IGARSS_2024.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1031803/files/Surbhi_Sharma_IGARSS_2024.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1031803
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187558
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21