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ABSTRACT

The increasing availability of high-resolution, open-
access satellite data facilitates the production of global Land
Cover (LC) maps, an essential source of information for man-
aging and monitoring natural and human-induced processes.
However, the accuracy of the obtained LC maps can be af-
fected by the discrepancy between the spatial resolution of
the satellite images and the extent of the LC present in the
scene. Indeed, several pixels may be misclassified because
of their mixed spectral signatures, i.e., more than two LC
classes are present in the pixel. To solve this problem, this
paper proposes an approach that explores the possibility of
using simple but effective unmixing approaches to enhance
the classification accuracy of the mixed spectral pixels. The
results showed that several pixels, including buildings and
grassland LC, are typically classified as cropland. By unmix-
ing their spectral content, it is possible to extract the most
prevalent class within the area of each pixel to update the
classification map, thus sharply increasing the map accuracy.
These promising preliminary results indicate the potential for
broader applicability and efficiency in global LC mapping.

Index Terms— Land Cover (LC) mapping, spectral un-
mixing, Sentinel-2, Land use/cover area frame survey (LU-
CAS).

1. INTRODUCTION

With the Copernicus Programme, the availability of free
and open high-resolution satellite data has completely trans-
formed the methods used to monitor the Earth’s surface. The
spatial, temporal, and unique spectral properties of the Coper-
nicus Sentinel-2 satellite data have enabled the Earth obser-
vation (EO) community to produce global thematic products
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at a 10m spatial resolution [1]. The production of accurate
LC maps enables continuous monitoring of the Earth’s sur-
face, which is crucial for managing the planet’s resources and
observing environmental processes such as desertification,
urbanization, and deforestation [2].

Multiple satellite pixels can be associated with mixed
spectral signatures due to the differing spatial resolutions of
satellite images compared to the extent of the LC classes
present in the scene. This can lead to inaccurate classification
results, thus affecting the reliability of the final thematic prod-
uct [3]. In [4], the authors demonstrated that when evaluating
the accuracy of existing thematic products using validation
databases derived by visually interpreting satellite data, they
achieved higher accuracy than when using in-situ data. This
discrepancy typically occurs when the size of the LC class
present in the scene is much smaller than the geometrical
resolution of the satellite data, e.g., small rivers or tiny roads
[3]. While much effort has been devoted to generating LC
products at the global level [4], little has been done to mit-
igate the influence of mixed pixels on the LC classification
result [5].

To solve this problem, the main objective of this paper is
to understand and deal with the complexities of specific LC
classes at a pixel level to increase the accuracy of obtained
LC maps, using spectral unmixing with underlying semantic
differences. First, a pre-processing step performs data har-
monization of the considered time series of optical satellite
data. Then, an ensemble of Random Forest (RF) classifiers is
trained to produce a set of LC maps that are compared to de-
tect discrepancies among them. This condition allows to au-
tomatically detect the samples with the highest probability of
belonging to mixed spectral pixels, i.e., those with inconsis-
tent classification results. Finally, for the inconsistent pixels,
a state-of-the-art unmixing approach is applied to disentangle
the different spectral components and determine the best LC
label to be assigned to those pixels.

2. PROPOSED METHOD

Fig. 1 shows the block diagram of the proposed method,
which is based on three main steps: (i) satellite data pre-



Fig. 1. Workflow of the proposed data-driven approach to improve LC mapping of the mixed spectral pixels.

processing, (ii) identification of inconsistent LC classification
results, and (iii) LC map enhancement for mixed spectral pix-
els.

2.1. Pre-processing

In the first step of the proposed method, the time series of op-
tical satellite images used to generate the LC map are harmo-
nized. In the considered experiments, the Sentinel-2 satellite
data, widely used for LC mapping due to their high spatial
resolution (10m), high revisit time (up to 5 days), and spec-
tral properties, are utilized [4, 6]. In particular, a time series of
Sentinel-2 images acquired throughout the year is considered
to generate an annual LC map. To remove cloud coverage and
harmonize the data from the spatial and temporal viewpoint,
the time series of images are converted into a time series of
12 monthly composites. The median approximation of the re-
flectance values collected over each month is computed for
each pixel. Let TS = (X1,X2, · · · ,X12) be the time series
of 12 monthly composites, with xk ∈ R1×120 representing
the kth pixel’s temporal spectral vectors associated with the
120 features, i.e., 10 reflectance values × 12 months. These
monthly composites are then used to generate LC maps.

2.2. Inconsistent Classification Pixel Detection

The second step of the proposed method aims to automat-
ically identify the mixed spectral pixels with the highest
probability of being misclassified. To this end, an ensem-
ble of statistically independent Random Forest classifiers is
trained using randomly chosen training samples via a boot-
strap technique [7, 8]. Let Ωc be the set of LC classes
present in the scene. The initial pool of labeled data is sam-
pled without replacement to generate of N training set, i.e.,
{T1, T2, · · · , TN} used to train N independent classifiers
{C1, C2, · · · , CN}, where Tn = {(xb, yb)}b is the nth train-
ing set having xb ∈ R1×120 and yb ∈ Ωc. In this setup, it

is reasonable to assume that the obtained classification errors
are uncorrelated and associated with the mixed spectral pix-
els, which typically lead to uncertain classification results.
By comparing the ensemble of obtained LC maps, the pool
of inconsistent pixels having the highest probability of being
mixed from the spectral viewpoint is identified.

2.3. Land Cover Map Enhancement

Finally, the method aims to identify inconsistencies and mis-
classifications that provide patterns and information about
mixed pixels. Here, for simplicity, we used Linear Spectral
Unmixing to analyze the contribution of different endmem-
bers, or materials within a mixed pixel [9]. However, any
other unmixing techniques can be considered. The linear
mixing model is often represented as follows:

R = S ·A+ E, (1)

where: R represents the observed spectrum of a mixed
pixel, S is a matrix containing the spectra of the endmem-
bers, A is a vector containing the abundance fractions of each
endmember in the pixel, and E is an error term accounting for
factors such as noise or atmospheric effects. The objective of
spectral unmixing is to determine the abundance fractions (A)
of each endmember within a mixed pixel. An abundance map
illustrates the spatial distribution of these fractions throughout
an image. These abundance maps are generated on the yearly
composite of Sentinel-2 time-series images obtained by using
the median approximation of the reflectance values collected
over the whole year for each pixel. These maps are further
used to improve classification accuracy by updating LC maps
with the most prevalent class.

3. DATASET DESCRIPTION

To train and validate the obtained LC map, we used in-
situ data from the Land Use and Coverage Area frame Sur-



Fig. 2. Example of LUCAS point labeled as ‘Artificial Land’
(a) High-resolution Google Earth Satellite View, (b) LUCAS
street-level image, (c) zoomed-in view of the residential area
containing LUCAS point, (d) Sentinel-2 image located in the
LUCAS point.

vey (LUCAS) database [10], a survey coordinated by the
Statistical Office of the European Commission (Eurostat),
which collects harmonized data on land cover/land use, agro-
environmental variables, and soil through field observation
of geographically referenced points. The LC labels in the
LUCAS database are defined according to the Land Cover
Classification System (LCCS) [11].

The experimental setup preprocesses and downloads time
series of Sentinel-2 Level-2A data for 2018. Each series con-
sists of a 3× 3 pixel patch with a 20m spatial resolution (dis-
carding bands with a 60m spatial resolution) and is associated
with the LC label available in LUCAS. To capture a detailed
and accurate representation of ground reference data, a 3× 3
patch of Sentinel-2 is used. As an example in Fig. 2, it can
be seen that even though the LUCAS point clearly describes a
residential area to be classified as artificial land (see Fig. 2(a),
Fig. 2(b), and Fig. 2(c)), the Sentinel-2 pixel associated with
the point location is mixed (see Fig. 2(d)), covering a grass-
land as well, potentially leading to a mixed spectral signature
and misclassification.

4. EXPERIMENTS AND RESULTS

To assess the effectiveness of the proposed approach, results
have been carried out at the country and continental level. In
particular, we considered 3659 LUCAS points from Belgium
and 337854 LUCAS points covering the European Union
(EU). A pool of inconsistent pixels was identified by compar-
ing the ensemble of LC maps obtained using the RF classifier,
having the highest probability of being mixed as described
in Section 2.2. The class probabilities per pixel were also
calculated for 9 LC classes, namely ‘Artificial land’, ‘Bare-
land’, ‘Broadleaves’, ‘Conifers’, ‘Cropland’, ‘Grassland’,
‘Shrubland’, ‘Water’, and ‘Wetland’. A total of 478 pixels
from Belgium and 51,806 pixels from EU with a higher class
probability of being in more than one class were identified
as mixed and chosen for further spectral analysis. From the
obtained inconsistent samples, 220 samples from Belgium
and 26,316 samples from EU are found to be misclassified.

Fig. 3. Abundance Map obtained after Spectral Unmixing for
four different LUCAS points, marked as red and yellow, la-
beled as ‘Artificial Land’. Figures (1.a)-(4.a) and (1.b)-(4.b)
show the LUCAS points in Sentinel-2 and High-resolution
Google Earth Satellite View. Figures (1.c) - (4.c) represent
the Abundance Map obtained from the Sentinel-2 yearly com-
posite of respective LUCAS points.

For experimentation, our study is limited to 478 pixels from
Belgium and a randomly selected subset of 1000 pixels out of
51,806 inconsistent pixels from the EU to reduce the overall
computational time.

Fig. 3 shows example cases corresponding to four differ-
ent LUCAS points labeled as ‘Artificial land’. Since the
obtained inconsistent pixels belong to some of the ma-
jor LC classes, the abundance maps were created by per-
forming spectral unmixing, focusing on finding 9 major
classes, namely ‘Artificial land’, ‘Bareland’, ‘Broadleaves’,
‘Conifers’, ‘Cropland’, ‘Grassland’, ‘Shrubland’, ‘Water’,
and ‘Wetland’ as shown in Fig. 3. These maps are created
on a 3 × 3 patch for a more detailed and optimal view of
what is on the ground using the annual composite, as shown
in Fig. 3(1.c) - (4.c), respectively. The endmembers, or the
‘pure spectra’, were determined in a supervised way for the
purpose of cross-referencing. Finally, the labels were updated
based on the highest abundance fraction of the class obtained.

The overall classification accuracy and weighted average



Table 1. The weighted average F-score and Overall accuracy using the baseline and proposed method.

Classes Belgium Samples from EU
Baseline Proposed Method Baseline Proposed Method

Weighted Average F1-score 0.51 0.63 0.43 0.54

Overall Accuracy 0.54 0.62 0.45 0.54

F1-score for the baseline method and our proposed method,
are reported in Tab. 1. It can be seen that our proposed
methodology performs well overall. The results obtained on
a single country, Belgium, and at the European level sug-
gest that assigning the pixels to the class corresponding to the
highest abundance fraction can help improve the accuracies
of LC classification.

5. CONCLUSION

This paper introduces a data-driven workflow for improving
LC maps via spectral unmixing, specifically targeting mixed
pixel issues to bolster classification accuracy. This study
makes use of an automated workflow and method to gener-
ate abundance maps and update LC labels using optimized
resources available on High-performance computing (HPC)
systems and data parallel processing strategies. The results
suggest potential for streamlining both the LC classification
and enhancement processes. The study also explores the
misclassification arising from semantic differences between
satellite and in-situ data, which are attributed to their different
spatial resolutions and viewpoints. The obtained results pro-
vide insights into the mixed spectral classes that are typically
present at a scene and are misclassified. With the help of
spectral unmixing, the proposed approach successfully up-
dates the classification maps by extracting the most prevalent
class within the area of each pixel, increasing the accuracy of
the LC map.

6. FUTURE DEVELOPMENTS

The obtained abundance fractions provide valuable insights
for the most prevalent class present on the scene. In cases
where the highest abundance fractions do not match or jus-
tify the in-situ data, especially where the second abundance
fraction is the actual class label, a detailed analysis of each
time series component from patches and rule-based filtering
can be opted for updating LC labels. In addition, advanced
Deep Learning (DL) models, known for their extensive data
requirements, such as Transformers, could significantly en-
hance the accuracy of baseline methods like RF [12]. Other
unsupervised techniques for evaluating endmembers, such as
Vertex Component analysis (VCA), also hold the potential
for significantly expediting the workflow, which, on the other
hand, relies mostly on the spectral disposition of the dataset
[13, 14].

7. REFERENCES

[1] R. Van De Kerchove, D. Zanaga, W. Keersmaecker, N. Souverijns,
J. Wevers, C. Brockmann, A. Grosu, A. Paccini, O. Cartus, M. Santoro,
et al., “Esa worldcover: Global land cover mapping at 10 m resolu-
tion for 2020 based on sentinel-1 and 2 data.,” in AGU Fall Meeting
Abstracts, 2021, vol. 2021, pp. GC45I–0915.

[2] A. Stoian, V. Poulain, J. Inglada, V. Poughon, and D. Derksen, “Land
cover maps production with high resolution satellite image time series
and convolutional neural networks: Adaptations and limits for opera-
tional systems,” Remote Sensing, vol. 11, no. 17, pp. 1986, 2019.

[3] C. Paris, L. Martinez-Sanchez, M. van der Velde, S. Sharma, R. Sedona,
and G. Cavallaro, “Accuracy assessment of land-use-land-cover maps:
the semantic gap between in situ and satellite data,” in Image and Signal
Processing for Remote Sensing XXIX. 2023, vol. 12733, SPIE.

[4] Zander S Venter, David N Barton, Tirthankar Chakraborty, Trond
Simensen, and Geethen Singh, “Global 10 m land use land cover
datasets: A comparison of dynamic world, world cover and esri land
cover,” Remote Sensing, vol. 14, no. 16, pp. 4101, 2022.

[5] Chao Yang, Guofeng Wu, Kai Ding, Tiezhu Shi, Qingquan Li, and
Jinliang Wang, “Improving land use/land cover classification by inte-
grating pixel unmixing and decision tree methods,” Remote Sensing,
vol. 9, no. 12, pp. 1222, 2017.

[6] European Space Agency (ESA), “Copernicus Sentinel-2 MSI Level-2A
BOA Reflectance Product,” 2021, Collection 1.

[7] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32,
2001.

[8] Gilles Louppe, “Understanding random forests: From theory to prac-
tice,” 2015.

[9] Jiaojiao Wei and Xiaofei Wang, “An overview on linear unmixing of
hyperspectral data,” Mathematical Problems in Engineering, vol. 2020,
pp. 1–12, 08 2020.

[10] R. d’Andrimont, M. Yordanov, L. Martinez-Sanchez, B. Eiselt,
A. Palmieri, P. Dominici, F. J. Gallego Pinilla, H. Reuter, C. Joebges,
G. Lemoine, and M. Velde, “Harmonised lucas in-situ land cover
and use database for field surveys from 2006 to 2018 in the european
union,” Scientific Data, vol. 7, 10 2020.

[11] M. Herold, R. Hubald, and A. Di Gregorio, “Translating and evaluating
land cover legends using the un land cover classification system (lccs),”
GOGC-GOLD Report, vol. 43, 2009.

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin, “Atten-
tion is all you need,” CoRR, vol. abs/1706.03762, 2017.

[13] J.M.P. Nascimento and J.M.B. Dias, “Vertex component analysis: a
fast algorithm to unmix hyperspectral data,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 43, no. 4, pp. 898–910, 2005.
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