001031804 001__ 1031804
001031804 005__ 20250310131232.0
001031804 0247_ $$2doi$$a10.1109/IGARSS53475.2024.10642188
001031804 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05824
001031804 0247_ $$2WOS$$aWOS:001316158500102
001031804 037__ $$aFZJ-2024-05824
001031804 1001_ $$0P:(DE-HGF)0$$aGhosh, Raktim$$b0
001031804 1112_ $$aIGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium$$cAthens$$d2024-07-07 - 2024-07-12$$wGreece
001031804 245__ $$aA CNN Architecture Tailored For Quantum Feature Map-Based Radar Sounder Signal Segmentation
001031804 260__ $$bIEEE$$c2024
001031804 300__ $$a442-445
001031804 3367_ $$2ORCID$$aCONFERENCE_PAPER
001031804 3367_ $$033$$2EndNote$$aConference Paper
001031804 3367_ $$2BibTeX$$aINPROCEEDINGS
001031804 3367_ $$2DRIVER$$aconferenceObject
001031804 3367_ $$2DataCite$$aOutput Types/Conference Paper
001031804 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1730974909_13200
001031804 520__ $$aThis article presents a hybrid quantum-classical framework by incorporating quantum feature maps into a classical Convolutional Neural Network (CNN) architecture for detecting different subsurface targets in radar sounder signals. The quantum feature maps are generated by quantum circuits to utilize spatially-bound input information from the training samples. The associated spectral probabilistic amplitudes of the feature maps are further fed into the classical CNN-based network to classify the subsurface targets in the radargram. Experimental results on the MCoRDS and MCoRDS3 datasets demonstrated the capability of enhancing the classical architecture through quantum feature maps for characterizing radar sounder data.
001031804 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001031804 588__ $$aDataset connected to CrossRef Conference
001031804 7001_ $$0P:(DE-Juel1)191384$$aDelilbasic, Amer$$b1$$ufzj
001031804 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b2$$ufzj
001031804 7001_ $$0P:(DE-HGF)0$$aBovolo, Francesca$$b3
001031804 770__ $$z979-8-3503-6032-5
001031804 773__ $$a10.1109/IGARSS53475.2024.10642188
001031804 8564_ $$uhttps://juser.fz-juelich.de/record/1031804/files/IEEE_IGARSS_Quantum_Segmentation_2024-Final_RG.pdf$$yOpenAccess
001031804 8564_ $$uhttps://juser.fz-juelich.de/record/1031804/files/IEEE_IGARSS_Quantum_Segmentation_2024-Final_RG.gif?subformat=icon$$xicon$$yOpenAccess
001031804 8564_ $$uhttps://juser.fz-juelich.de/record/1031804/files/IEEE_IGARSS_Quantum_Segmentation_2024-Final_RG.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001031804 8564_ $$uhttps://juser.fz-juelich.de/record/1031804/files/IEEE_IGARSS_Quantum_Segmentation_2024-Final_RG.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001031804 8564_ $$uhttps://juser.fz-juelich.de/record/1031804/files/IEEE_IGARSS_Quantum_Segmentation_2024-Final_RG.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001031804 909CO $$ooai:juser.fz-juelich.de:1031804$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001031804 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191384$$aForschungszentrum Jülich$$b1$$kFZJ
001031804 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b2$$kFZJ
001031804 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001031804 9141_ $$y2024
001031804 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031804 920__ $$lyes
001031804 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001031804 980__ $$acontrib
001031804 980__ $$aVDB
001031804 980__ $$aUNRESTRICTED
001031804 980__ $$aI:(DE-Juel1)JSC-20090406
001031804 9801_ $$aFullTexts