001     1031804
005     20250310131232.0
024 7 _ |a 10.1109/IGARSS53475.2024.10642188
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05824
|2 datacite_doi
024 7 _ |a WOS:001316158500102
|2 WOS
037 _ _ |a FZJ-2024-05824
100 1 _ |a Ghosh, Raktim
|0 P:(DE-HGF)0
|b 0
111 2 _ |a IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium
|c Athens
|d 2024-07-07 - 2024-07-12
|w Greece
245 _ _ |a A CNN Architecture Tailored For Quantum Feature Map-Based Radar Sounder Signal Segmentation
260 _ _ |c 2024
|b IEEE
300 _ _ |a 442-445
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1730974909_13200
|2 PUB:(DE-HGF)
520 _ _ |a This article presents a hybrid quantum-classical framework by incorporating quantum feature maps into a classical Convolutional Neural Network (CNN) architecture for detecting different subsurface targets in radar sounder signals. The quantum feature maps are generated by quantum circuits to utilize spatially-bound input information from the training samples. The associated spectral probabilistic amplitudes of the feature maps are further fed into the classical CNN-based network to classify the subsurface targets in the radargram. Experimental results on the MCoRDS and MCoRDS3 datasets demonstrated the capability of enhancing the classical architecture through quantum feature maps for characterizing radar sounder data.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Delilbasic, Amer
|0 P:(DE-Juel1)191384
|b 1
|u fzj
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 2
|u fzj
700 1 _ |a Bovolo, Francesca
|0 P:(DE-HGF)0
|b 3
770 _ _ |z 979-8-3503-6032-5
773 _ _ |a 10.1109/IGARSS53475.2024.10642188
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1031804/files/IEEE_IGARSS_Quantum_Segmentation_2024-Final_RG.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1031804/files/IEEE_IGARSS_Quantum_Segmentation_2024-Final_RG.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1031804/files/IEEE_IGARSS_Quantum_Segmentation_2024-Final_RG.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1031804/files/IEEE_IGARSS_Quantum_Segmentation_2024-Final_RG.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1031804/files/IEEE_IGARSS_Quantum_Segmentation_2024-Final_RG.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1031804
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)191384
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21