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ABSTRACT
This article presents a hybrid quantum-classical framework by
incorporating quantum feature maps regulated classical Con-
volutional Neural Network (CNN) architecture in the context
of detecting different subsurface targets in the radar sounder
signal. The quantum feature maps are generated by quantum
circuits to utilize spatially-bound input information from the
input training samples. The associated spectral probabilistic
amplitudes of the feature maps are further fed as an input to the
classical CNN-based network to classify the subsurface targets
in the radargram. Experimental results on the MCoRDS and
MCoRDS3 dataset demonstrated the capability of contextual-
izing the classical architecture through quantum feature maps
for characterizing the radar sounder data.

Index Terms— radar sounder, quantum computing, quan-
tum machine learning, subsurface sensing, segmentation

1. INTRODUCTION

Radar Sounders are spaceborne or airborne nadir looking sen-
sors with active sensing capabilities that transmit linearly mod-
ulated Electromagnetic (EM) pulses and receive backscattered
echoes from the subsurface targets depending upon the geo-
metric properties of the targets, dielectric discontinuities, etc.
These sensors operate on the range of High Frequency (HF)
to Very High Frequency (VHF) bands [1]. After the backscat-
tered echoes are collected, a coherent integration of these
echoes is performed by compression techniques (range and
azimuth) with Synthetic Aperture Radar (SAR) Focusing to
generate radargram [2]. A number of post-processing tasks
(such as clutter suppression, platform instability corrections)
are also taken into account in the overall pipeline for generat-
ing the final high-level product. These radargrams are utilized
for miscellaneous tasks such as estimating geophysical proper-
ties, subsurface target identification, semantic segmentation,
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etc. A significant research activities have been carried out over
the last few years to characterize the radargrams by incorporat-
ing miscellaneous supervised and unsupervised segmentation
techniques by utilizing Convolutional Neural Network (CNN)
based architectures or Transformers networks [3, 4].

Over the last few years, Quantum Machine Learning
(QML) has been proliferated as a rapidly emerging and evolv-
ing field with a view to improving the overall framework of
classical machine learning problems. QML is broadly associ-
ated to the principle of quantum mechanics applied to quan-
tum computing tasks to perform measurement by Quantum
Computers. [5] proposed a combinatorial framework with 4
different categorizations of QML- i) Classical-Classical (CC),
ii) Classical-Quantum (CQ), iii) Quantum-Classical (QC), and
iv) Quantum-Quantum (QQ). While CC approaches are fully
classical agent interacting with classical environment, CQ
settings may investigate how classical learning framework
interact in aiding quantum tasks. QC approaches are the
quantum-inspired learning framework with classical envi-
ronmental settings. While considering QML, QC approaches
investigate the potential enhancement of classical environment
with quantum devices. More generally, the Hybrid QC (HQC)
architecture may exploit imperfect Noisy Intermediate-Scale
Quantum (NISQ) devices for selected computations on quan-
tum hardware. Lastly, the QQ approaches fully exploit the
quantum infrastructure for carrying out QML on quantum
data [6]. A number of quantum algorithms are developed
in various domains ranging from search optimization, quan-
tum cryptography, quantum simulations in physics-based
problems, etc [7]. In the domain of remote sensing image
classification, [8] developed a gate-based quantum computing
with a HQC architecture for classifying remote sensing im-
ages, [9] incorporated Quantum SVM algorithm on a quantum
annealing framework for classifying remote sensing images.
Recently, [10] developed a HQC architecture for multispectral
remote sensing image classification problems by utilizing the
features extracted from quantum circuits. While considering
the domain of radar sounder, so far there is no attempt to
utilize quantum feature maps for classifying the subsurface



Fig. 1. A Schematic Layout of CNN Architecture tailored with
Quantum Feature Maps generated through a 4-qubit random
quantum circuit.

targets in radargrams.
This study aims to explore the potential of QC in the

context of radar sounder signal segmentation. Our work is
adopted from the framework of [11]. However, we utilize a
Bellman quantum circuit [8] as well as a Random quantum
circuit [11] to generate quantum feature maps and assess the
performance on the classical CNN architecture. Experimental
results demonstrated that the quantum feature maps derived
from the quantum circuits depict a rich spectral probabilistic
information for the overall learning framework in the context
of radar sounder signal.

2. PROPOSED METHODOLOGY

Let us denote a radargram patch as a 2-D matrix R:

𝑅 = {𝑅(𝑖, 𝑗) |𝑖 ∈ 𝑋 = [1, ..., 𝑛𝑇 ], 𝑗 ∈ 𝑌 = [1, ..., 𝑛𝑆]} (1)

where [1, ..., 𝑛𝑇 ] is the number of traces in the azimuth direc-
tion, and [1, ..., 𝑛𝑆] is the number of samples along the range
direction.

We denote 𝑁 as the number of training patches as
{(𝑋1, 𝑋2, ..., 𝑋𝑁 )} and associated labels as {(𝐿1, 𝐿2, ..., 𝐿𝑁 )}
with the spatial dimension of 𝑋𝑖 is [𝐻,𝑊] (𝑖 ∈ 1, 2, ..., 𝑁).
The proposed method aims at classifying each pixel of radar-
grams into 𝑐 distinct classes.

Figure 1 shows the overall schematic layout of the seg-
mentation architecture for the radar sounder data. At first,
the classical information from the input training patches is in-
jected into the parameterized quantum circuits to measure the
probability amplitudes with respect to the states of different
qubits. Here, probability amplitudes refer to corresponding
probabilities of collapsing of the qubits with the possible ba-
sis states. These probability amplitudes generate the quantum
feature maps with the dimension corresponding to 2𝑑 for a
𝑑 − 𝑞𝑢𝑏𝑖𝑡 quantum system. After that, the quantum feature

maps flow through convolutions to measure the probabilities
for final class-wise predictions.

successive convolution operations are performed on these
quantum feature maps to measure the probabilities for final
class-wise predictions.

2.1. Quantum Feature Maps

We extract spatially-bound local information by square
filtering each 𝑋𝑖 with a filter of size 𝑞 × 𝑞. For 𝑞 =

2, let us denote such neighbourhood with size 2 × 2 as
[𝛼𝑚,𝑛, 𝛼𝑚+1,𝑛, 𝛼𝑚,𝑛+1, 𝛼𝑚+1,𝑛+1] (𝑚 ∈ {1, 2, ..., 𝐻} and
𝑛 ∈ {1, 2, ...,𝑊}). The size of the filter corresponds to
the number of qubits in the quantum circuits. For each qubit,
rotation operators (𝜃𝑘) are utilized to project the qubits into
the Hilbert space. The parameters 𝜃𝑘 in the rotation op-
erators are injected with the localized classical information
[𝛼𝑚,𝑛, 𝛼𝑚+1,𝑛, 𝛼𝑚,𝑛+1, 𝛼𝑚+1,𝑛+1]. Therefore, for each spatial
location of 𝑞 × 𝑞, a 2𝑞×𝑞 dimensional vector is created by tak-
ing the probability amplitudes associated to the corresponding
states estimated through quantum circuits. The successive
convolution operations with the spatial dimension of the filter
𝑞 × 𝑞 across the image domain [𝐻,𝑊] will produce 2𝑞×𝑞
feature maps each with size [𝐻,𝑊]. The spatial dimension of
the final tensors of the quantum feature maps is [2𝑞×𝑞 , 𝐻,𝑊].
These probabilistic spectral information embedded into the
quantum feature maps is utilized in the successive CNN layers
for the tasks of semantic segmentation.

2.2. Quantum Circuits

In this work, we utilize a standard quantum circuit from the
IBM Qiskit framework, and a random quantum circuit as a
quantum feature map generator.

2.2.1. Bellman Quantum Circuit

The first circuit is the Bellman Quantum Circuit which is
utilized as a Quantum feature map generator. By utilizing a
Hadamard gate on a first qubit, and successive CNOT gates be-
tween the consecutive qubits, the circuit prepares an entangled
state at the first place. After establishing quantum correlations
through Entanglement, the qubits are rotated along the 𝑦-axis
with parameters 𝜃𝑘 . These 𝜃𝑘 values are the spatially bound
classical information [𝛼𝑚,𝑛, 𝛼𝑚+1,𝑛, 𝛼𝑚,𝑛+1, 𝛼𝑚+1,𝑛+1] for a 4-
𝑞𝑢𝑏𝑖𝑡 system convolved with a 2 × 2 filter across dimension
[𝐻,𝑊] for a training sample 𝑋𝑖 . After the operation of ro-
tated entangled state of the system, the CNOT processes are
mirrored with respect to preceding CNOT operations before
the rotations of qubits through 𝑦-axis.

2.2.2. Random Quantum Circuit

Figure 3 depicts a random quantum circuit. At first, the en-
coding is performed by injecting the classical values (from
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Fig. 2. A Schematic Layout of Bellman Quantum Circuit
adopted from [8]
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Fig. 3. A Schematic Layout of Random Quantum Circuit

input training samples) into the rotation gates for each qubits.
Subsequently, several arbitrary unitary oeprators comprising
different quantum gates are incorporated, depending on the
user-defined depth of the quantum system. Lastly, the mea-
surement is done on the random quantum circuits and the
corresponding probability amplitudes are utilized as inputs to
the classical neural networks.

2.3. CNN Layers

We denoted the tensor dimension of the generated quantum
feature maps are [2𝑞×𝑞 , 𝐻,𝑊]. The dimension of the quan-
tum feature tensors [2𝑞×𝑞 , 𝐻,𝑊] are raised to 𝐾 , where 𝐾 is
greater than 2𝑞×𝑞 . After utilizing CNN layers during train-
ing, the dimension of the tensor is reduced to the number of
classes. Therefore, the final tensor dimension is [𝑐, 𝐻,𝑊].

3. EXPERIMENTAL RESULTS

3.1. Dataset

We tested our proposed architecture on the MCoRDS and
MCoRDS3 dataset hosted by CReSIS unit. The operating
bandwidth of these sensors are 9.5 MHz and 30 MHz. The
operational aircraft height was about 7000 m for the MCoRDS
dataset. On the other hand, the aircraft altitude is about 500
m. The campaign took place over the Antarctica ranging from
(−86◦00′N to −15◦67′E) to (−86◦02′N to 29◦45′E) dated on
November 2010. While considering the MCoRDS dataset,
a total 27350 number of traces are considered covering 400
line-km with 8 radargrams. In case of MCoRDS3 dataset,

a total 30009 number of range lines are considered and the
campaign took place in the Greenland (inland) on 2017.

3.2. Experimental Setup

The radargrams are labelled manually along the azimuth
and range directions with respect to the distinct subsurface
labels. We extracted consecutive non-overlapping spatial
patches along the azimuth directions for the MCoRDS and
MCoRDS3 dataset. Here, we design a simple binary segmen-
tation problem by focusing on the deepest radargram portion
where can find only the noise and the bedrock. This reduces
the computational burden of generating quantum feature maps
from input training samples. However, more classes can be
considered. By identifying the bedrock through labels, the
patches are extracted across the thickness of bedrock in the
range directions. The spatial dimensions of each training
sample are kept as 50 × 50 during training and testing. 800
samples are utilized for training and 254 samples are kept for
testing. To derive the quantum feature maps, a spatial filter
𝑤 ×𝑤 = 2× 2 is utilized to extract 4 classical values (denoted
previous in Section 2 as [𝛼𝑚,𝑛, 𝛼𝑚+1,𝑛, 𝛼𝑚,𝑛+1, 𝛼𝑚+1,𝑛+1])
in successive convolutional step. These 4 classical values
are injected into the rotation gates (along the y-axis) of a
4 − 𝑞𝑢𝑏𝑖𝑡 qubit quantum system. To measure the probability
amplitudes for every joint 4− 𝑞𝑢𝑏𝑖𝑡 basis states, 512 shots are
utilized with IBM 𝐴𝑒𝑟𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 as a backend simulator. In
case of successive CNN operations on the derived quantum
feature maps, a CNN network with kernel size with 3 × 3
and 64 number of filters are utilized to raise the dimension
of the tensors from the quantum feature maps from 16 to
64. The probability amplitudes together with the associated
labels are used for training the CNN architecture. For the final
predictions, we reduce the channel dimension according to
the corresponding classes. We utilize the training iterations
as 100 with a constant learning rate of 1𝑒 − 5. The batch size
is kept as 16. For assessing the overall performance of the
proposed network, we utilize F1-score and Overall Accuracy
(OA) as evaluation metrics.

3.3. Segmentation Results

In Table 1, we report the quantitative results of the proposed
CNN architecture associated with the Bellman Quantum, and
Random Quantum Circuit along with the classical counterpart
of the CNN architecture. We carried out an ablation of the
CNN layers varying from 1 to 4 with 64 number of filters in
each layer. In classical counterpart, the quantum feature maps
are not utilized while training the CNN architecture. Quantita-
tively, the performance of the HQC architecture and the classi-
cal counterpart is similar. However, we observed a slight gain
of accuracy (against classical counterpart) while considering
a one-layered CNN architecture tailored with quantum fea-
ture maps. According to our observation, the entanglement in
Bellman circuit played a crucial role in transforming the input



Table 1. Accuracy Assessment. L-k denotes the number of hidden CNN layers with k = (1, 2, 3, 4)
CNN Layers L-1 L-2 L-3 L-3
Algorithms F1-Score OA F1-Score OA F1-Score OA F1-Score OA

HQC (Bellman Circuit) 0.6713 86.35 0.7028 87.93 0.7373 89.22 0.7565 89.99
HQC (Random Circuit) 0.6700 86.39 0.7081 88.04 0.7214 88.82 0.7553 90.00
Classical Counterpart 0.6526 85.79 0.7084 87.89 0.7366 89.21 0.7537 89.96

information into a quantum framework thereby demonstrat-
ing the potential of quantum mechanical phenomena as a rich
feature descriptor. Further, it is noteworthy that the spectral
probabilistic information generated through these two quan-
tum circuits achieved similar set of accuracy with the classical
counterpart. Therefore, the quantum feature maps generated
through the miscellaneous quantum circuits turned out to be
rich spectral information.

4. CONCLUSIONS

In this work, we explored the potential of quantum feature map
regulated CNN architecture for semantic segmentation of the
radar sounder data. Due to lack of current hardware infras-
tructure to generate quantum feature maps with computational
complexity, the spatial dimension of the training patches are
restricted to 50 × 50. In future work, we will explore the
quantum feature maps regulated generative models to exploit
the generalizability of the quantum features for radar sounder
signal.

5. REFERENCES

[1] Leonardo Carrer, Christopher Gerekos, Francesca Bo-
volo, and Lorenzo Bruzzone, “Distributed radar sounder:
A novel concept for subsurface investigations using sen-
sors in formation flight,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 57, no. 12, pp. 9791–
9809, 2019.

[2] A. Ilisei and L. Bruzzone, “A system for the automatic
classification of ice sheet subsurface targets in radar
sounder data,” IEEE TGRS, vol. 53, pp. 3260–3277,
2015.

[3] R. Ghosh and F. Bovolo, “Transsounder: A hybrid
transunet-transfuse architectural framework for semantic
segmentation of radar sounder data,” IEEE TGRS, vol.
60, pp. 1–13, 2022.

[4] R. Ghosh and F. Bovolo, “An enhanced unsupervised
feature learning framework for radar sounder signal seg-
mentation,” in IGARSS 2023 - 2023 IEEE IGARSS, 2023,
pp. 6920–6923.

[5] Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel,
“Quantum-enhanced machine learning,” Physical re-
view letters, vol. 117 13, pp. 130501, 2016.

[6] Lirandë Pira and Chris Ferrie, “An invitation to dis-
tributed quantum neural networks,” Quantum Mach.
Intell., vol. 5, no. 2, Dec. 2023.

[7] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,
N. Wiebe, and S. Lloyd, “Quantum machine learning,”
Nature, vol. 549, no. 7671, pp. 195–202, Sept. 2017.

[8] A. Sebastianelli, D. Zaidenberg, D. Spiller, B. Saux, and
S. Ullo, “On circuit-based hybrid quantum neural net-
works for remote sensing imagery classification,” IEEE
JSTARS, vol. 15, pp. 565–580, 2022.

[9] A. Delilbasic, G. Cavallaro, M. Willsch, F. Melgani,
M. Riedel, and K. Michielsen, “Quantum support vec-
tor machine algorithms for remote sensing data classi-
fication,” in 2021 IEEE International Geoscience and
Remote Sensing Symposium IGARSS, 2021, pp. 2608–
2611.

[10] F. Fan, Y. Shi, and X. X. Zhu, “Urban land cover classi-
fication from sentinel-2 images with quantum-classical
network,” in 2023 JURSE, 2023, pp. 1–4.

[11] Maxwell Henderson, Samriddhi Shakya, Shashindra
Pradhan, and Tristan Cook, “Quanvolutional neural net-
works: Powering image recognition with quantum cir-
cuits,” 2019.


