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4Delft University of Technology, Faculty CEG, 2628 CN Delft, The Netherlands

5University of Cyprus, Aglantzia, Nicosia, 2109, Cyprus

ABSTRACT

Seismic Imaging (SI) survey design for onshore applications
faces challenges such as accessibility and poor data quality
due to unexpected (near-)surface conditions. In this paper,
we explore the correlation between the surface conditions
provided by Land-Cover (LC) maps generated using Remote
Sensing (RS) data and different settings of Seismic Process-
ing (SP) parameters. The study involves a 2D seismic line
related to geothermal exploration from the Netherlands.

Index Terms— Remote Sensing, Seismic Data Process-
ing, Seismic Imaging, Deep Learning, Supercomputing

1. INTRODUCTION

SI is the process of creating an image of the Earth’s sub-
surface from seismic data. While SI is a powerful tool for
discovering the characteristics of subsurface geology, it has
some challenges, especially for the on-shore situations. When
we design the seismic survey, safety, and accessibility are al-
ways an important topic [1]. Moreover, different surface and
near-surface conditions may affect the quality of the acquired
seismic data [2]. Therefore, the survey design incorporates
choices based on expected seismic data quality.

A common method of assessing surface conditions for
seismic surveys is physical site visits and ground surveys,
where geologists inspect soil types and identify potential ob-
stacles. However, these are costly and time-consuming. RS
can help to solve this problem. Satellite imagery offers high-
resolution images of the Earth’s surface including dynamic
environmental changes, land cover maps, terrain, and topog-
raphy. Many applications use satellite data in seismology,
such as mapping active seismic faults on satellite images to
monitor and predict forthcoming earthquakes based on rup-
ture dynamics of these fault zones [3], interpretation of tec-
tonic and stratigraphic zones [4], imaging landslide structures
in mountain areas including ground motion displacement [5].

Contemporary Earth Observation (EO) programs like Euro-
pean Space Agency’s Copernicus offer open and freely ac-
cessible high-resolution, multi-temporal, and multi-spectral
RS data globally. This satellite data can facilitate an initial as-
sessment of accessibility and geological features, which is ad-
vantageous for Seismic Acquisition Design (SAD). Integrat-
ing the information acquired from seismic and satellite data
to improve seismic processing workflows involves a multi-
disciplinary approach that combines RS, geophysics, and ge-
ological studies. Laake et al. [6] already showed the relation
between satellite images and the estimated time shifts (so-
called ’statics’) to correct for low, near-surface seismic veloc-
ities.

In this work, we explore the correlation between sur-
face conditions, seismic processing parameters, and observed
noise content based on a 2D seismic line from the Nether-
lands related to geothermal exploration. Predicting seismic
attributes from satellite data could enhance the accuracy
and reliability of subsurface models, providing a better un-
derstanding of Earth’s subsurface structures and their cor-
responding physical properties. This can also support the
design of seismic surveys by making seismic data collection
more effective and efficient, which is important for low-
budget seismic applications related to the energy transition.

2. METHODOLOGY

2.1. Remote Sensing

The surface conditions are studied with RS by generating a
LC map using a modified version of the classification system
proposed by Paris et al. [7]. The system includes two main
steps. First, the time series of multi-spectral satellite data are
collected from the area where the seismic data are acquired.
After the clouds are removed from the metadata, a reliable la-
beled training set is extracted from the RS acquisitions, which
is then used to train Machine Learning (ML) or Deep Learn-



ing (DL) models. In this work, we use a Transformer DL
model [8] to predict the LC map. The workflow can scale on
High-Performance Computing (HPC) systems, as it relies on
parallel algorithms, such as those proposed by Tian et al. [9].

2.2. Seismic Processing and Imaging

For onshore active SI applications, a major role is attributed
to the pre-processing of the seismic measurements. Two main
factors influence the expected image quality: the presence
of deterministic noise in terms of low-velocity surface waves
with strong amplitudes. This noise is largely determined by
the so-called weathering layer, where the speed of sound of
such surface waves is strongly coupled to the soil type of this
upper layer [2]. The location and spatial sampling of seismic
receivers largely determine the ability to remove these noise
events and reveal the desired subsurface reflections. Next, this
low-velocity weathering layer also determines small time de-
lays observed in the seismic data, known as statics, that need
to be estimated and removed before further imaging steps can
be applied [10]. Therefore, the SAD for onshore applications
is guided by two basic principles [11]: the ability to suppress
noise that is mostly generated in the near-surface region and
the ability to illuminate the target area. This information sig-
nificantly facilitates the SAD process.

2.3. Integration

In this paper, we propose to integrate the LC map informa-
tion with SI, especially in the design phase, as follows: First,
the intended area is mapped using satellite image data and is
converted to LC maps using a DL approach, trained on previ-
ous data from the same or similar areas. Next, the important
seismic data properties (such as expected surface-wave veloc-
ities or noise content) can be mapped according to previous
correlations made from observed seismic data and LC maps.
Finally, based on these correlations, optimized decisions can
be made on the SAD regarding the location and sampling of
the seismic sources and/or receivers.

The work expands its significance to a variety of applica-
tions in geo-energy and geotechnical industries, such as find-
ing subsurface caverns for CO2 or green hydrogen storage,
subsurface characterization and monitoring, and shallow sur-
face investigation for civil engineering applications.

3. EXPERIMENTS AND RESULTS

The work is subdivided into three parts: seismic field data
analysis, the LC map generation, and the study of the correla-
tion between these two types of data.

3.1. 2D seismic line for geothermal exploration

Because of the urgency for the energy transition, 2D seismic
lines have been acquired across the Netherlands in the so-

called SCAN program [12] to identify locations for geother-
mal energy generation using deep subsurface formations.

Fig. 1: Zoom of the map of the Netherlands with the location
of the seismic line indicated in blue and a processed seismic
image along this line (starting at the lower left) displayed be-
low. Both figures are taken from [13]

An important study area in the Netherlands is selected
both for seismic and satellite imagery considering its poten-
tial for geothermal reservoirs. The data from a twenty-nine-
kilometer-long two-dimensional seismic line, originally ac-
quired for a geothermal reservoir survey, is used for the pro-
posed analysis. The map with the line and the corresponding
seismic section are shown in Figure 1.

We extracted the following information from the raw data
(i.e., the complete seismic gather for each shot number): A
map measuring the local speed of sound of the surface waves
(Vs) as a function of receiver station (rcv nr) and source or
shot number. This is visualized in Figure 2 as the left-most
panel. We considered the 200 closest receiver channels for
each shot, yielding this band-matrix structure. We can recog-
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Fig. 2: Seismic and satellite image attributes used in the analysis, with “rcv nr” being the position/station location along the
line. (left) estimated Vs as a function of shot and rcv nr., (left middle) noise as a function of shot and rcv nr., (right middle)
receiver elevation, and (right) Land-Cover Map Class (LCMC) along the line with its color map.

nize different regions where Vs is low (yellow color) or rel-
atively high (red-white color). Similarly, we calculated the
noise content as a function of the shot and receiver number
(left-middle panel). We also extracted the elevation for each
receiver station (right-middle panel). We identified 22 regions
along the line, and for each region we collected the lowest and
highest Vs value and the noise level (mapped on a scale from
0 to 10).

3.2. Satellite imaging-based land cover maps

For investigating the surface, satellite data that are collected
from March 2018 to March 2019 are utilized to produce the
LC maps for this region. The classification code employs
a PyTorch-based implementation of the Transformer model
[14] for DL. This model’s training leverages the PyTorch Dis-
tributed Data Parallel framework to efficiently scale across
multiple GPUs of JURECA-DC1. With a 10-meter spatial
resolution, the surface conditions are represented through 9
classes (see Figure 2, right). The LC maps have achieved a
local accuracy of 78.99.

3.3. Classification using a Random Forest approach

From satellite image data we can extract two types of infor-
mation: the elevation values at the seismic station locations
and the LCMC values that have been determined. Both are ex-
pected to correlate with the SP parameters, which could mean
that for e.g. acquisition design purposes, the SP parameters

1JURECA-DC: https://www.fz-juelich.de/en/ias/jsc/
systems/supercomputers/jureca

Table 1: Accuracies of the Random Forest prediction of three
seismic parameters (Noise level, lowest Vs, highest Vs) from
three types of input information.

Input Noise Vs,low Vs,high

Classes 0.50 0.46 0.36
Elevations 0.71 0.64 0.59

Classes & Elevations 0.79 0.76 0.72

can be predicted from the satellite data. We investigate this
via a Random Forest model [15] and Figure 3 shows the so-
called confusion matrix for the prediction of the noise level
(ranging from 0-10) at each location based on the LCMC, the
elevation, or both. The confusion matrix indicates how well
each true noise label is determined from the input variables
(being LCMC and/or elevation). We observe a significant im-
provement in the accuracy value for the case of the combined
information, as given in Table 1. As a result, the confusion
matrix gets more of a diagonal structure (Figure 3, bottom).

We did a similar analysis for the parameters Vs,low and
Vs,high. The accuracy values are also shown in Table 1.

4. CONCLUSION

Based on results from the seismic line in the Netherlands,
satellite image information can be used to predict SP param-
eters automatically. The satellite data information includes
elevation and the LC map, which is extracted via a classifica-
tion system. Combining these two types of information yields
the highest accuracy for SP parameters, ranging from 0.72 to
0.79. Such accurate prediction of seismic parameters will be

https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/jureca
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/jureca


valuable in SAD processing, where the locations and density
of the seismic stations are crucial parameters.
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Fig. 3: Confusion matrix for predicted noise content from
(top) LCMC information only, (middle) elevation information
only, (bottom) LCMC and elevation combined.
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