001     1031806
005     20250310131248.0
024 7 _ |a 10.1109/IGARSS53475.2024.10640974
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05826
|2 datacite_doi
024 7 _ |a WOS:001316158500100
|2 WOS
037 _ _ |a FZJ-2024-05826
100 1 _ |a Delilbasic, Amer
|0 P:(DE-Juel1)191384
|b 0
|e Corresponding author
|u fzj
111 2 _ |a IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium
|c Athens
|d 2024-07-07 - 2024-07-12
|w Greece
245 _ _ |a Reverse Quantum Annealing for Hybrid Quantum-Classical Satellite Mission Planning
260 _ _ |c 2024
|b IEEE
300 _ _ |a 432-436
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1730963319_20213
|2 PUB:(DE-HGF)
520 _ _ |a The trend of building larger and more complex imaging satellite constellations leads to the challenge of managing multiple acquisition requests for the Earth's surface. Optimally planning these acquisitions is an intractable optimization problem, and heuristic algorithms are used today to find sub-optimal solutions. Recently, quantum algorithms have been considered for this purpose due to the potential breakthroughs they can bring in optimization, expecting either a speedup or an increase in solution quality. Hybrid quantum-classical methods have been considered a short-term solution for taking advantage of small quantum machines. In this paper, we propose reverse quantum annealing as a method for improving the acquisition plan obtained by a classical optimizer. We investigate the benefits of the method with different annealing schedules and different problem sizes. The obtained results provide guidelines for designing a larger hybrid quantum-classical framework based on reverse quantum annealing for this application.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Le Saux, Bertrand
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 2
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 3
|u fzj
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 4
|u fzj
770 _ _ |z 979-8-3503-6032-5
773 _ _ |a 10.1109/IGARSS53475.2024.10640974
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1031806/files/Amer_Delilbasic_IGARSS_2024.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1031806/files/Amer_Delilbasic_IGARSS_2024.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1031806/files/Amer_Delilbasic_IGARSS_2024.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1031806/files/Amer_Delilbasic_IGARSS_2024.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1031806/files/Amer_Delilbasic_IGARSS_2024.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1031806
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191384
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21