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ABSTRACT

The trend of building larger and more complex imaging satel-
lite constellations leads to the challenge in managing multiple
acquisition requests of the Earth surface. Optimally planning
these acquisitions is an intractable optimization problem, and
heuristic algorithms are used today for finding sub-optimal
solutions. Recently, quantum algorithms have been consid-
ered for this purpose, due to the potential breakthroughs that
they can bring in optimization, expecting either a speedup or
an increase in the solution quality. Hybrid quantum-classical
methods have been considered as a short-term solution for
taking advantage of small quantum machines. In this pa-
per, we propose reverse quantum annealing as a method for
improving the acquisition plan obtained by a classical opti-
mizer. We investigate the benefits of the method with dif-
ferent annealing schedules and different problem sizes. The
obtained results provide guidelines on designing a larger hy-
brid quantum-classical framework based on reverse quantum
annealing for this application.

Index Terms— Optimization, quantum computing, quan-
tum annealing, reverse quantum annealing, mission planning.

1. INTRODUCTION

Satellite Mission Planning (SMP) consists in scheduling the
acquisition of images given a set of requests, a satellite imag-
ing system and a number of constraints. Exact and approx-
imate methods for solving the combinational optimization
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problem have already been defined in the past [1]. How-
ever, as the problems become larger in practical cases, the
performance of existing methods degrades.

Research on quantum computing has provided a new
computational paradigm that processes information in a fun-
damentally different way. By comparing quantum algorithms
and classical algorithms, a number of advantages and disad-
vantages can be found. Research efforts aim at understanding
what the theoretical and practical advantages of quantum al-
gorithms are and how different applications can benefit from
them. A number of contributions on quantum computing
for SMP have been recently published. In [2], the problem
is reframed as a Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problem and solved with Quantum Anneal-
ing (QA). The idea of employing hybrid quantum-classical
optimization has also been explored. In a recent work, both
hybrid and full quantum solvers based on quantum annealing
have been tested on different D-Wave machines [3]. A hybrid
quantum reinforcement learning method has been proposed in
[4]. A proof of concept using variational quantum algorithms
has also been shown [5]. This last approach is generally
considered as a good candidate for experimentally validating
and employing NISQ devices. Nevertheless, the best way to
combine quantum and classical resources for SMP is still an
open question.

In this paper, we explore the computational capabilities of
reverse QA. Specifically, we propose a hybrid method for the
SMP problem that integrates a classical heuristic solver with
a quantum optimizer. The reverse QA step serves as a local
exploration of the solution space, taking a classically obtained
candidate solution as input. This has been proven effective in
previous work, e.g., for portfolio optimization problems [6].

Sect. 2 provides an introduction to forward and reverse
QA. Sect. 3 describes the considered problem setting and
proposes a hybrid quantum-classical framework for its solu-
tion. Sect. 4 contains experimental results of reverse QA in-
stances. Sect. 5 concludes the paper and summarizes possible
future research directions.
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Fig. 1. Example plot of s for reverse QA compared to stan-
dard (forward) QA. Instead of simply being a normalized
time, here s is a time-varying parameter that regulates the evo-
lution of the Hamiltonian.
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Fig. 2. Considered acquisition setting. In red, a possible so-
lution to the SMP problem is highlighted.

2. QUANTUM ANNEALING

2.1. Forward Quantum Annealing

Adiabatic Quantum Computation (AQC) [7, 8] is a compu-
tational paradigm where the operations applied to qubits are
forces acting on a quantum system. The temporal evolution of
the quantum system, denoted as the state |φ(t)⟩, is governed
by Schrödinger’s Equation, expressed as:

iℏ
∂ |φ(t)⟩

∂t
= H(t) |φ(t)⟩ (1)

where i denotes the imaginary unit, ℏ the reduced Planck con-
stant, and H(t) a time-varying Hamiltonian describing the
system. The concept of AQC involves encoding the desired
outcome as the ground state of the final Hamiltonian HF ,
which is also the final state of the evolved quantum system, if
the assumptions of the adiabatic theorem [9] are satisfied.

D-Wave quantum annealers are the physical implementa-
tion of a quantum system with a specific Hamiltonian of the

following form:
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where s = t/T is the normalized time, T the total anneal-
ing time, A(s) and B(s) are the weights of two Hamiltonians,
respectively called transverse Hamiltonian and Ising Hamilto-
nian, and σ̂

(i)
x and σ̂

(i)
z are the Pauli x and Pauli z operators.

The coefficients hi and Ji,j are the coefficients of the Ising
problem that the Ising Hamiltonian encodes. An Ising prob-
lem is an optimization problem where the cost function is of
the following form:

I (x1, . . . , xn) =

n∑
i=1

hixi +
∑
i<j

Jijxixj (3)

where the variables xi can assume the values −1 and 1.
Note that QUBO problems, commonly found in the litera-
ture, are equivalent to Ising problems where the values of the
variables are set to 0 and 1, and the coefficients are adapted
accordingly. For this reason, both Ising and QUBO formula-
tions are compatible with QA.

The functions A(s) and B(s) of the annealing Hamilto-
nian in Eq. 2 are chosen so that A(s) is decreasing to 0 and
B(s) is increasing from 0 for s ∈ [0, 1]. In this setup, the
state of the system at s = 0 is the ground state of the trans-
verse Hamiltonian, which is easy to prepare, and the state at
s = 1 is expected to be the ground state of the Ising Hamilto-
nian, which encodes the optimal solution to the optimization
problem.

2.2. Reverse Quantum Annealing

So far, the standard QA method has been presented, referred
to as forward QA. However, it is possible to act on the func-
tions A(s) and B(s) to change the time evolution of the sys-
tem, also changing the logic of the machine. A possibility is
to act on the variable s. Methods that revert the progression
of s during time are referred to as reverse QA. For example,
instead of a linear time progression, the annealer can start at
s = 1, invert the time evolution, and then restart it shortly
after. Fig. 1 graphically shows possible anneal paths for for-
ward and reverse QA.

An advantage of reverse QA is that a possible solution
to the optimization problem can be set as the initial state of
the system. This has shown to guide the search and refine
previously found solutions [10].



Fig. 3. General flowchart of a hybrid quantum-classical solver based on reverse QA. The classical and the quantum part are
highlighted in blue and red.

3. HYBRID OPTIMIZATION FOR SATELLITE
MISSION PLANNING

3.1. Problem Definition

SMP problems vastly differ between different systems and ap-
plications. Generally, the problem consists in assigning ac-
quisition requests to satellites to maximize the value of the
acquisitions and minimize the time. A number of required or
desired constraints are enforced, e.g., related to the satellite
constellations, sensors, on-board memory, cloud coverage, il-
lumination, or communication with ground stations.

We consider a simple formulation of the SMP problem
[5]. A set of R acquisition requests is provided, and a sub-
set of them is to be found so that a system made of a single
satellite is able to satisfy them in a single pass. This subset is
defined as a binary vector x ∈ (0, 1)R, where xi means that
the area i is planned to be acquired. An arbitrary value vi is
set to each acquisition, which may correspond to economic
value or urgency. The constraint is related to the fact that the
satellite needs time to rotate the sensor and acquire images at
different off-nadir angles. A representation of the acquisition
setting is shown in Fig. 2.

The mathematical formulation of the optimization prob-
lem is the following:

max
x∈{0,1}R

R∑
i=1

xivi with

R(i, j) ≤ T (i, j) if xi = xj = 1

(4)

where R(i, j) is the sensor rotation time between the ac-
quisitions i and j, and T (i, j) is the orbital transition time of
the satellite between the acquisitions i and j.

This problem is reframed to a QUBO problem, equiva-
lent to the Ising problem in Eq. 3, to ensure compatibility

with QA. The constraint is included in the cost function as a
penalty term:

max
x∈{0,1}R

R∑
i=1

xivi − p ·
R−1∑
i=1

R∑
j=i

xixj · c(i, j) (5)

where p is the penalty weight, c(i, j) = 1 if R(i, j) >
T (i, j) and c(i, j) = 0 otherwise.

3.2. Hybrid Quantum-Classical Optimization

QUBO problems can be solved both with classical and quan-
tum methods. Classical solvers can deal with a high number
of variables, but a tradeoff between solution time and qual-
ity is needed. Solvers based on quantum annealing can be
quick, but they have a strong limitation on the problem size.
A possible approach to bring together such different solvers
is to have the classical solver deal with the whole problem,
and run the quantum solver on specific subproblems that fit
the size of the machine. This problem decomposition can be
done in multiple ways. For example, the method can select the
M variables that have the most impact on the cost function.
However, the existence of an embedding for the newly gen-
erated M -variable problem is a requirement for proceeding.
For this reason, M should be carefully chosen in advance, or
adapted at runtime. Once a new, hopefully better solution is
obtained in the reverse QA phase, the original solution can be
updated, and the cycle can be repeated until the ending con-
ditions are met (e.g., number of repetitions or convergence).
A flowchart of the proposed approach is shown in Fig. 3.

4. EXPERIMENTAL VALIDATION

The goal is to verify whether reverse QA can provide an ad-
vantage in finding optimal acquisition plans, a necessary con-



Fig. 4. Energy differences between quantum annealing-based methods and SA. Mean, minimum and maximum out of 5
problems for each number of acquisition requests R are highlighted. Only differences higher than −80 are shown.

dition for the hybrid framework in Fig. 3 to be effective. A
total of 25 SMP problems has been instantiated using the mqt-
problemsolver library [5]. Given a number of acquisitions, the
library generates a collection of random acquisition requests
with different values and provides a QUBO formulation of
the problem, as in Eq. (5). The number of acquisitions has
been chosen as R ∈ {20, 40, 60, 80, 100}, and 5 different in-
stances for each R have been generated. The QUBO problem
is first solved running Simulated Annealing (SA), a classi-
cal method for combinatorial optimization. This serves as a
baseline method for comparison. The best obtained solution
is then used to initialize the state of the quantum annealer
and perform reverse QA. The anneal path regulating this step
is shown in Fig. 1. The parameters that regulate the anneal
path, also shown in Fig. 1, are: shold, which determines at
which value of s the Hamiltonian stops its reverse path; tahold,
the time at which this value of s is reached and the reverse
path stops; tbhold, the time at which the forward path is re-
sumed; T , the total time of the QA step. In our case, we
optimize the anneal path varying shold and other derived pa-
rameters: reverse slope, hold time, and forward slope. This
choice comes from the fact that quantum annealers specifi-
cally impose a limitation on the slope of the anneal path that
can be implemented.

The parameters are optimized using Bayesian optimiza-
tion [11]. This method ensures a relatively low number of
cost function evaluations (as reverse QA can be costly), and it
has been preferred to standard anneal path choices in previous
work [10]. The obtained results are compared with standard
QA, which requires no initial solution. Each optimizer is set

to sample 500 solutions, among which the single best one is
selected.

The difference between the energy of the obtained best
solutions and the baseline are shown in Fig. 4. For R = 20
acquisitions, the problem is simple enough to be optimally
solved by all the solvers. An improvement on the baseline can
also be seen with QA alone, especially for R = 60. Never-
theless, reverse QA becomes a better choice than forward QA
especially for R = 80. This clearly shows the positive effect
of providing an initial classically obtained solution. More-
over, reverse QA can also improve on that solution in certain
instances. The performance of both quantum optimizers de-
creases for R = 100, also due to the noise affecting the quan-
tum annealer.

5. CONCLUSIONS

In this preliminary work, we showed the potential of reverse
QA for SMP, which can improve the acquisition plans ob-
tained with SA in some cases. A natural continuation of the
work can provide more insights on the reverse QA method by
choosing different acquisition settings, anneal paths, and con-
figurations. Afterwards, the full framework for large-scale
hybrid optimization can be implemented, taking into account
the advantages and limitations of reverse QA. This approach
can greatly benefit from an integration of quantum computing
with high-performance computing systems, allowing paral-
lelization and lowering communication time overheads.
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[1] J C Agnèse, Nicolas Bataille, Denis Blumstein, Eric
Bensana, and G Verfaillie, “Exact and Approximate
Methods for the Daily Management of an Earth Obser-
vation Satellite,” Proceedings of SpaceOPS, 01 1996.

[2] Tobias Stollenwerk, Vincent Michaud, Elisabeth Lobe,
Mathieu Picard, Achim Basermann, and Thierry Bot-
ter, “Agile Earth Observation Satellite Scheduling with
a Quantum Annealer,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 57, pp. 3520–3528, 10
2021.
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