% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@INPROCEEDINGS{Wasmer:1031807,
author = {Wasmer, Johannes and Mozumder, Rubel},
othercontributors = {Antognini Silva, David and Rüssmann, Philipp and Blügel,
Stefan},
title = {{P}rediction of the magnetic exchange interaction in doped
topological insulators},
school = {RWTH Aachen},
reportid = {FZJ-2024-05827},
year = {2024},
abstract = {We present a benchmark study of surrogate models for
impurities embedded into crystalline solids. Using the
Korringa-Kohn-Rostoker Green Function method and the AiiDA
workflow engine [1], we have built a database of magnetic
transition metal impurity dimers embedded in the topological
insulator Bi2Te3. We predict isotropic exchange interaction
of the impurity dimer in the classical Heisenberg model with
machine learning and then use these surrogates as input for
spin dynamics calculations to find the magnetic ground state
of the material [2]. The study compares various recent
E(3)-equivariant models such as ACE and MACE [3] in terms of
performance and reproducible end-to-end
workflows.References.[1] P. Rüßmann, F. Bertoldo, S.
Blügel, npj. Comput. Mater., 7, 13 (2021)[2] P. Rüßmann,
J. Ribas Sobreviela, M. Sallermann, M. Hoffmann, F. Rhiem,
S. Blügel, Front. Mater., 9, (2022)[3] Batatia, I.,
Kovács, D. P., Simm, G. N. C., Ortner, C. $\&$ Csányi, G.
MACE: Higher Order Equivariant Message Passing Neural
Networks for Fast and Accurate Force Fields. Preprint
(2022).},
month = {Jul},
date = {2024-07-08},
organization = {Machine Learning of First Principles
Observables, Berlin (Germany), 8 Jul
2024 - 12 Jul 2024},
subtyp = {Invited},
cin = {PGI-1},
cid = {I:(DE-Juel1)PGI-1-20110106},
pnm = {5211 - Topological Matter (POF4-521) / 5111 -
Domain-Specific Simulation $\&$ Data Life Cycle Labs (SDLs)
and Research Groups (POF4-511) / AIDAS - Joint Virtual
Laboratory for AI, Data Analytics and Scalable Simulation
$(aidas_20200731)$ / HDS LEE - Helmholtz School for Data
Science in Life, Earth and Energy (HDS LEE)
(HDS-LEE-20190612) / DFG project G:(GEPRIS)390534769 - EXC
2004: Materie und Licht für Quanteninformation (ML4Q)
(390534769)},
pid = {G:(DE-HGF)POF4-5211 / G:(DE-HGF)POF4-5111 /
$G:(DE-Juel-1)aidas_20200731$ / G:(DE-Juel1)HDS-LEE-20190612
/ G:(GEPRIS)390534769},
typ = {PUB:(DE-HGF)6},
doi = {10.34734/FZJ-2024-05827},
url = {https://juser.fz-juelich.de/record/1031807},
}