Home > Publications database > Prediction of the magnetic exchange interaction in doped topological insulators > print |
001 | 1031807 | ||
005 | 20250401102820.0 | ||
024 | 7 | _ | |a 10.34734/FZJ-2024-05827 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-05827 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Wasmer, Johannes |0 P:(DE-Juel1)186072 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a Machine Learning of First Principles Observables |g mlfpo24 |c Berlin |d 2024-07-08 - 2024-07-12 |w Germany |
245 | _ | _ | |a Prediction of the magnetic exchange interaction in doped topological insulators |
260 | _ | _ | |c 2024 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1729227335_11255 |2 PUB:(DE-HGF) |x Invited |
502 | _ | _ | |c RWTH Aachen |
520 | _ | _ | |a We present a benchmark study of surrogate models for impurities embedded into crystalline solids. Using the Korringa-Kohn-Rostoker Green Function method and the AiiDA workflow engine [1], we have built a database of magnetic transition metal impurity dimers embedded in the topological insulator Bi2Te3. We predict isotropic exchange interaction of the impurity dimer in the classical Heisenberg model with machine learning and then use these surrogates as input for spin dynamics calculations to find the magnetic ground state of the material [2]. The study compares various recent E(3)-equivariant models such as ACE and MACE [3] in terms of performance and reproducible end-to-end workflows.References.[1] P. Rüßmann, F. Bertoldo, S. Blügel, npj. Comput. Mater., 7, 13 (2021)[2] P. Rüßmann, J. Ribas Sobreviela, M. Sallermann, M. Hoffmann, F. Rhiem, S. Blügel, Front. Mater., 9, (2022)[3] Batatia, I., Kovács, D. P., Simm, G. N. C., Ortner, C. & Csányi, G. MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields. Preprint (2022). |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
536 | _ | _ | |a AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731) |0 G:(DE-Juel-1)aidas_20200731 |c aidas_20200731 |x 2 |
536 | _ | _ | |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612) |0 G:(DE-Juel1)HDS-LEE-20190612 |c HDS-LEE-20190612 |x 3 |
536 | _ | _ | |a DFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769) |0 G:(GEPRIS)390534769 |c 390534769 |x 4 |
650 | 2 | 7 | |a Magnetism |0 V:(DE-MLZ)SciArea-170 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Magnetic Materials |0 V:(DE-MLZ)GC-1604-2016 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Antognini Silva, David |0 P:(DE-Juel1)186673 |b 1 |e Contributor |u fzj |
700 | 1 | _ | |a Mozumder, Rubel |0 P:(DE-Juel1)185917 |b 2 |
700 | 1 | _ | |a Rüssmann, Philipp |0 P:(DE-Juel1)157882 |b 3 |e Contributor |u fzj |
700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 4 |e Contributor |u fzj |
856 | 4 | _ | |u https://iffgit.fz-juelich.de/phd-project-wasmer/presentations/2024-07-08-talk-mlfpo24 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031807/files/presentation.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031807/files/presentation.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031807/files/presentation.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031807/files/presentation.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031807/files/presentation.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1031807 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186072 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)186673 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)185917 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)157882 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130548 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|