001     1031813
005     20250203124516.0
024 7 _ |a 10.1109/AMPS62611.2024.10706699
|2 doi
024 7 _ |a WOS:001344552300035
|2 WOS
037 _ _ |a FZJ-2024-05832
100 1 _ |a Pegoraro, Paolo Attilio
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 2024 IEEE 14th International Workshop on Applied Measurements for Power Systems (AMPS)
|c Caserta
|d 2024-09-18 - 2024-09-20
|w Italy
245 _ _ |a Fault Identification Method in Three-Phase Distribution Networks Leveraging Traceable PMU Measurements
260 _ _ |c 2024
|b IEEE
300 _ _ |a 1-6
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1728895294_31825
|2 PUB:(DE-HGF)
520 _ _ |a Several fault detection methods and location algorithms in the literature are founded on state estimation. In recent approaches, in most cases, the state estimation process is performed based on synchronized measurements provided by phasor measurement units (PMUs). However, coupling fault identification with phasor measurements is a challenging task, which can present several risks. Particularly, in dynamic scenarios related to faults, the traceability of the measurements could be compromised. To reduce decision-making risks, this paper proposes the application of a dynamics detection policy in a fault detection and location method based on PMU measurements. Such policy permits selecting only traceable measurements. Consequently, decision risks can be reduced. The validity of the proposed approach is confirmed by the simulations carried out by means of a Real-Time Digital Simulator (RTDS) on a three-phase CIGRE European Medium Voltage distribution network.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1123 - Smart Areas and Research Platforms (POF4-112)
|0 G:(DE-HGF)POF4-1123
|c POF4-112
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Sitzia, Carlo
|0 P:(DE-Juel1)184450
|b 1
700 1 _ |a Solinas, Antonio Vincenzo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sulis, Sara
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Carta, Daniele
|0 P:(DE-Juel1)186779
|b 4
|u fzj
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 5
|u fzj
773 _ _ |a 10.1109/AMPS62611.2024.10706699
856 4 _ |u https://ieeexplore.ieee.org/abstract/document/10706699
909 C O |o oai:juser.fz-juelich.de:1031813
|p VDB
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)184450
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)186779
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)179029
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1123
|x 1
914 1 _ |y 2024
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21