001     1031814
005     20250203124520.0
024 7 _ |a 10.1109/AMPS62611.2024.10706662
|2 doi
024 7 _ |a WOS:001344552300003
|2 WOS
037 _ _ |a FZJ-2024-05833
100 1 _ |a Pasella, Manuela
|0 P:(DE-Juel1)200465
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 2024 IEEE 14th International Workshop on Applied Measurements for Power Systems (AMPS)
|c Caserta
|d 2024-09-18 - 2024-09-20
|w Italy
245 _ _ |a On the Quality of Pseudo-Measurements for Distribution System State Estimation
260 _ _ |c 2024
|b IEEE
300 _ _ |a 1-6
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1728895315_31821
|2 PUB:(DE-HGF)
520 _ _ |a With the increasing penetration of distributed en-ergy resources, Smart Grids control applications are always more dependent on monitoring data. Pseudo-measurements are used in Distribution System State Estimation to allow estimating the operating conditions of the system also when the number of field measurements is limited. Since the accuracy of the estimation depends on the quality of the pseudo-measurements, in this paper the factors that affect this quality are investigated and the performance of a machine learning-based approach for pseudo-measurements generation is evaluated. Starting from real data collected from the Forschungszentrum Jülich campus, a dataset is engineered, and the considered data coding approach is presented. Finally, different neural models based on multilayer perceptron are presented, and their performances are compared with those of trivial alternatives.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1123 - Smart Areas and Research Platforms (POF4-112)
|0 G:(DE-HGF)POF4-1123
|c POF4-112
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 1
|u fzj
700 1 _ |a Cannas, Barbara
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Carta, Daniele
|0 P:(DE-Juel1)186779
|b 3
|u fzj
700 1 _ |a Muscas, Carlo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pisano, Fabio
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1109/AMPS62611.2024.10706662
856 4 _ |u https://ieeexplore.ieee.org/abstract/document/10706662
909 C O |o oai:juser.fz-juelich.de:1031814
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)200465
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)200465
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179029
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186779
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1123
|x 1
914 1 _ |y 2024
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21