001     1031817
005     20250203133212.0
024 7 _ |a 10.1021/acs.jcim.4c00776
|2 doi
024 7 _ |a 1549-9596
|2 ISSN
024 7 _ |a 0095-2338
|2 ISSN
024 7 _ |a 1520-5142
|2 ISSN
024 7 _ |a (BIS
|2 ISSN
024 7 _ |a 44.2004)
|2 ISSN
024 7 _ |a 1549-960X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05836
|2 datacite_doi
024 7 _ |a 39344272
|2 pmid
024 7 _ |a WOS:001325651400001
|2 WOS
037 _ _ |a FZJ-2024-05836
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Jäckering, Anna
|0 P:(DE-Juel1)178762
|b 0
245 _ _ |a Influence of Wobbling Tryptophan and Mutations on PET Degradation Explored by QM/MM Free Energy Calculations
260 _ _ |a Washington, DC
|c 2024
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734172530_20064
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a ABSTRACT: Plastic-degrading enzymes, particularly poly(ethylene terephthalate)(PET) hydrolases, have garnered significant attention in recent years aspotential eco-friendly solutions for recycling plastic waste. However, understandingof their PET-degrading activity and influencing factors remainsincomplete, impeding the development of uniform approaches for enhancingPET hydrolases for industrial applications. A key aspect of PET hydrolaseengineering is optimizing the PET-hydrolysis reaction by lowering the associatedfree energy barrier. However, inconsistent findings have complicated these efforts.Therefore, our goal is to elucidate various aspects of enzymatic PET degradationby means of quantum mechanics/molecular mechanics (QM/MM) reactionsimulations and analysis, focusing on the initial reaction step, acylation, in twothermophilic PET hydrolases, LCC and PES-H1, along with their highly active variants, LCCIG and PES-H1FY. Our findingshighlight the impact of semiempirical QM methods on proton transfer energies, affecting the distinction between a two-step reactioninvolving a metastable tetrahedral intermediate and a one-step reaction. Moreover, we uncovered a concerted conformational changeinvolving the orientation of the PET benzene ring, altering its interaction with the side-chain of the “wobbling” tryptophan from Tstackingto parallel π−π interactions, a phenomenon overlooked in prior research. Our study thus enhances the understanding of theacylation mechanism of PET hydrolases, in particular by characterizing it for the first time for the promising PES-H1FY using QM/MM simulations. It also provides insights into selecting a suitable QM method and a reaction coordinate, valuable for future studieson PET degradation processes.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a van der Kamp, Marc
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 2
|e Corresponding author
700 1 _ |a Zinovjev, Kirill
|0 P:(DE-HGF)0
|b 3
770 _ _ |a Applications of Free-Energy Calculations to Biomolecular Processes
773 _ _ |a 10.1021/acs.jcim.4c00776
|g p. acs.jcim.4c00776
|0 PERI:(DE-600)1491237-5
|p acs.jcim.4c00776
|t Journal of chemical information and modeling
|v 11
|y 2024
|x 1549-9596
856 4 _ |u https://juser.fz-juelich.de/record/1031817/files/j%C3%A4ckering-et-al-2024-influence-of-wobbling-tryptophan-and-mutations-on-pet-degradation-explored-by-qm-mm-free-energy.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1031817
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178762
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM INF MODEL : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM INF MODEL : 2022
|d 2024-12-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21