Home > Publications database > Influence of Wobbling Tryptophan and Mutations on PET Degradation Explored by QM/MM Free Energy Calculations > print |
001 | 1031817 | ||
005 | 20250203133212.0 | ||
024 | 7 | _ | |a 10.1021/acs.jcim.4c00776 |2 doi |
024 | 7 | _ | |a 1549-9596 |2 ISSN |
024 | 7 | _ | |a 0095-2338 |2 ISSN |
024 | 7 | _ | |a 1520-5142 |2 ISSN |
024 | 7 | _ | |a (BIS |2 ISSN |
024 | 7 | _ | |a 44.2004) |2 ISSN |
024 | 7 | _ | |a 1549-960X |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-05836 |2 datacite_doi |
024 | 7 | _ | |a 39344272 |2 pmid |
024 | 7 | _ | |a WOS:001325651400001 |2 WOS |
037 | _ | _ | |a FZJ-2024-05836 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Jäckering, Anna |0 P:(DE-Juel1)178762 |b 0 |
245 | _ | _ | |a Influence of Wobbling Tryptophan and Mutations on PET Degradation Explored by QM/MM Free Energy Calculations |
260 | _ | _ | |a Washington, DC |c 2024 |b American Chemical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1734172530_20064 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a ABSTRACT: Plastic-degrading enzymes, particularly poly(ethylene terephthalate)(PET) hydrolases, have garnered significant attention in recent years aspotential eco-friendly solutions for recycling plastic waste. However, understandingof their PET-degrading activity and influencing factors remainsincomplete, impeding the development of uniform approaches for enhancingPET hydrolases for industrial applications. A key aspect of PET hydrolaseengineering is optimizing the PET-hydrolysis reaction by lowering the associatedfree energy barrier. However, inconsistent findings have complicated these efforts.Therefore, our goal is to elucidate various aspects of enzymatic PET degradationby means of quantum mechanics/molecular mechanics (QM/MM) reactionsimulations and analysis, focusing on the initial reaction step, acylation, in twothermophilic PET hydrolases, LCC and PES-H1, along with their highly active variants, LCCIG and PES-H1FY. Our findingshighlight the impact of semiempirical QM methods on proton transfer energies, affecting the distinction between a two-step reactioninvolving a metastable tetrahedral intermediate and a one-step reaction. Moreover, we uncovered a concerted conformational changeinvolving the orientation of the PET benzene ring, altering its interaction with the side-chain of the “wobbling” tryptophan from Tstackingto parallel π−π interactions, a phenomenon overlooked in prior research. Our study thus enhances the understanding of theacylation mechanism of PET hydrolases, in particular by characterizing it for the first time for the promising PES-H1FY using QM/MM simulations. It also provides insights into selecting a suitable QM method and a reaction coordinate, valuable for future studieson PET degradation processes. |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a van der Kamp, Marc |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Strodel, Birgit |0 P:(DE-Juel1)132024 |b 2 |e Corresponding author |
700 | 1 | _ | |a Zinovjev, Kirill |0 P:(DE-HGF)0 |b 3 |
770 | _ | _ | |a Applications of Free-Energy Calculations to Biomolecular Processes |
773 | _ | _ | |a 10.1021/acs.jcim.4c00776 |g p. acs.jcim.4c00776 |0 PERI:(DE-600)1491237-5 |p acs.jcim.4c00776 |t Journal of chemical information and modeling |v 11 |y 2024 |x 1549-9596 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031817/files/j%C3%A4ckering-et-al-2024-influence-of-wobbling-tryptophan-and-mutations-on-pet-degradation-explored-by-qm-mm-free-energy.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1031817 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)178762 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132024 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Helmholtz: American Chemical Society 01/01/2023 |0 PC:(DE-HGF)0122 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-12 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM INF MODEL : 2022 |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-12 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J CHEM INF MODEL : 2022 |d 2024-12-12 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|