001031830 001__ 1031830
001031830 005__ 20250203133212.0
001031830 0247_ $$2doi$$a10.21105/joss.05839
001031830 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05845
001031830 037__ $$aFZJ-2024-05845
001031830 082__ $$a004
001031830 1001_ $$0P:(DE-HGF)0$$aHalchenko, Yaroslav O.$$b0$$eCorresponding author
001031830 245__ $$aHeuDiConv — flexible DICOM conversion into structured directory layouts
001031830 260__ $$a[Erscheinungsort nicht ermittelbar]$$b[Verlag nicht ermittelbar]$$c2024
001031830 3367_ $$2DRIVER$$aarticle
001031830 3367_ $$2DataCite$$aOutput Types/Journal article
001031830 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729499623_25924
001031830 3367_ $$2BibTeX$$aARTICLE
001031830 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031830 3367_ $$00$$2EndNote$$aJournal Article
001031830 500__ $$aOpen Source Initiative8605 Santa Monica Blvd PMB 63639West Hollywood, CA 90069-4109United StatesThe Open Source Initiative’s IRS Tax ID Number (TIN) is 91-2037395.The Open Source Initiative’s EU Transparency Register Number 672028337929-77
001031830 520__ $$aIn order to support efficient processing, data must be formatted according to standards thatare prevalent in the field and widely supported among actively developed analysis tools. TheBrain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016) is an open standard designedfor computational accessibility, operator legibility, and a wide and easily extendable scopeof modalities — and is consequently used by numerous analysis and processing tools as thepreferred input format in many fields of neuroscience. HeuDiConv (Heuristic DICOM Converter)enables flexible and efficient conversion of spatially reconstructed neuroimaging data fromthe DICOM format (quasi-ubiquitous in biomedical image acquisition systems, particularlyin clinical settings) to BIDS, as well as other file layouts. HeuDiConv provides a multi-stageoperator input workflow (discovery, manual tuning, conversion) where a manual tuning step isoptional and the entire conversion can thus be seamlessly integrated into a data processingpipeline. HeuDiConv is written in Python, and supports the DICOM specification for input parsing, and the BIDS specification for output construction. The support for these standardsis extensive, and HeuDiConv can handle complex organization scenarios that arise for specificdata types (e.g., multi-echo sequences, or single-band reference volumes). In addition togenerating valid BIDS outputs, additional support is offered for custom output layouts. Thisis obtained via a set of built-in fully functional or example heuristics expressed as simplePython functions. Those heuristics could be taken as a template or as a base for developingcustom heuristics, thus providing full flexibility and maintaining user accessibility. HeuDiConvfurther integrates with DataLad (Halchenko et al., 2021), and can automatically preparehierarchies of DataLad datasets with optional obfuscation of sensitive data and metadata,including obfuscating patient visit timestamps in the git version control system. As a result,given its extensibility, large modality support, and integration with advanced data managementtechnologies, HeuDiConv has become a mainstay in numerous neuroimaging workflows, andconstitutes a powerful and highly adaptable tool of potential interest to large swathes of theneuroimaging community.
001031830 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001031830 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001031830 7001_ $$0P:(DE-HGF)0$$aGoncalves, Mathias$$b1
001031830 7001_ $$0P:(DE-HGF)0$$aGhosh, Satrajit$$b2
001031830 7001_ $$0P:(DE-HGF)0$$aVelasco, Pablo$$b3
001031830 7001_ $$0P:(DE-HGF)0$$aVisconti di Oleggio Castello, Matteo$$b4
001031830 7001_ $$0P:(DE-HGF)0$$aSalo, Taylor$$b5
001031830 7001_ $$0P:(DE-HGF)0$$aWodder, John T.$$b6
001031830 7001_ $$0P:(DE-Juel1)177087$$aHanke, Michael$$b7
001031830 7001_ $$0P:(DE-HGF)0$$aSadil, Patrick$$b8
001031830 7001_ $$0P:(DE-HGF)0$$aGorgolewski, Krzysztof Jacek$$b9
001031830 7001_ $$0P:(DE-HGF)0$$aIoanas, Horea-Ioan$$b10
001031830 7001_ $$0P:(DE-HGF)0$$aRorden, Chris$$b11
001031830 7001_ $$0P:(DE-HGF)0$$aHendrickson, Timothy J.$$b12
001031830 7001_ $$0P:(DE-HGF)0$$aDayan, Michael$$b13
001031830 7001_ $$0P:(DE-HGF)0$$aHoulihan, Sean Dae$$b14
001031830 7001_ $$0P:(DE-HGF)0$$aKent, James$$b15
001031830 7001_ $$0P:(DE-HGF)0$$aStrauss, Ted$$b16
001031830 7001_ $$0P:(DE-HGF)0$$aLee, John$$b17
001031830 7001_ $$0P:(DE-HGF)0$$aTo, Isaac$$b18
001031830 7001_ $$0P:(DE-HGF)0$$aMarkiewicz, Christopher J.$$b19
001031830 7001_ $$0P:(DE-HGF)0$$aLukas, Darren$$b20
001031830 7001_ $$0P:(DE-HGF)0$$aButler, Ellyn R.$$b21
001031830 7001_ $$0P:(DE-HGF)0$$aThompson, Todd$$b22
001031830 7001_ $$0P:(DE-HGF)0$$aTermenon, Maite$$b23
001031830 7001_ $$0P:(DE-HGF)0$$aSmith, David V.$$b24
001031830 7001_ $$0P:(DE-HGF)0$$aMacdonald, Austin$$b25
001031830 7001_ $$0P:(DE-HGF)0$$aKennedy, David N.$$b26
001031830 773__ $$0PERI:(DE-600)2891760-1$$a10.21105/joss.05839$$gVol. 9, no. 99, p. 5839 -$$n99$$p5839 -$$tThe journal of open source software$$v9$$x2475-9066$$y2024
001031830 8564_ $$uhttps://juser.fz-juelich.de/record/1031830/files/10.21105.joss.05839.pdf$$yOpenAccess
001031830 8564_ $$uhttps://juser.fz-juelich.de/record/1031830/files/10.21105.joss.05839.gif?subformat=icon$$xicon$$yOpenAccess
001031830 8564_ $$uhttps://juser.fz-juelich.de/record/1031830/files/10.21105.joss.05839.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001031830 8564_ $$uhttps://juser.fz-juelich.de/record/1031830/files/10.21105.joss.05839.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001031830 8564_ $$uhttps://juser.fz-juelich.de/record/1031830/files/10.21105.joss.05839.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001031830 909CO $$ooai:juser.fz-juelich.de:1031830$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001031830 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Open Neuroscience, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA$$b0
001031830 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177087$$aForschungszentrum Jülich$$b7$$kFZJ
001031830 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001031830 9141_ $$y2024
001031830 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001031830 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031830 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001031830 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-09-10T14:45:56Z
001031830 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-09-10T14:45:56Z
001031830 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2024-09-10T14:45:56Z
001031830 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001031830 980__ $$ajournal
001031830 980__ $$aVDB
001031830 980__ $$aUNRESTRICTED
001031830 980__ $$aI:(DE-Juel1)INM-7-20090406
001031830 9801_ $$aFullTexts