001     1031830
005     20250203133212.0
024 7 _ |a 10.21105/joss.05839
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05845
|2 datacite_doi
037 _ _ |a FZJ-2024-05845
082 _ _ |a 004
100 1 _ |a Halchenko, Yaroslav O.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a HeuDiConv — flexible DICOM conversion into structured directory layouts
260 _ _ |a [Erscheinungsort nicht ermittelbar]
|c 2024
|b [Verlag nicht ermittelbar]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729499623_25924
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Open Source Initiative8605 Santa Monica Blvd PMB 63639West Hollywood, CA 90069-4109United StatesThe Open Source Initiative’s IRS Tax ID Number (TIN) is 91-2037395.The Open Source Initiative’s EU Transparency Register Number 672028337929-77
520 _ _ |a In order to support efficient processing, data must be formatted according to standards thatare prevalent in the field and widely supported among actively developed analysis tools. TheBrain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016) is an open standard designedfor computational accessibility, operator legibility, and a wide and easily extendable scopeof modalities — and is consequently used by numerous analysis and processing tools as thepreferred input format in many fields of neuroscience. HeuDiConv (Heuristic DICOM Converter)enables flexible and efficient conversion of spatially reconstructed neuroimaging data fromthe DICOM format (quasi-ubiquitous in biomedical image acquisition systems, particularlyin clinical settings) to BIDS, as well as other file layouts. HeuDiConv provides a multi-stageoperator input workflow (discovery, manual tuning, conversion) where a manual tuning step isoptional and the entire conversion can thus be seamlessly integrated into a data processingpipeline. HeuDiConv is written in Python, and supports the DICOM specification for input parsing, and the BIDS specification for output construction. The support for these standardsis extensive, and HeuDiConv can handle complex organization scenarios that arise for specificdata types (e.g., multi-echo sequences, or single-band reference volumes). In addition togenerating valid BIDS outputs, additional support is offered for custom output layouts. Thisis obtained via a set of built-in fully functional or example heuristics expressed as simplePython functions. Those heuristics could be taken as a template or as a base for developingcustom heuristics, thus providing full flexibility and maintaining user accessibility. HeuDiConvfurther integrates with DataLad (Halchenko et al., 2021), and can automatically preparehierarchies of DataLad datasets with optional obfuscation of sensitive data and metadata,including obfuscating patient visit timestamps in the git version control system. As a result,given its extensibility, large modality support, and integration with advanced data managementtechnologies, HeuDiConv has become a mainstay in numerous neuroimaging workflows, andconstitutes a powerful and highly adaptable tool of potential interest to large swathes of theneuroimaging community.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Goncalves, Mathias
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ghosh, Satrajit
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Velasco, Pablo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Visconti di Oleggio Castello, Matteo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Salo, Taylor
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wodder, John T.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hanke, Michael
|0 P:(DE-Juel1)177087
|b 7
700 1 _ |a Sadil, Patrick
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gorgolewski, Krzysztof Jacek
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ioanas, Horea-Ioan
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Rorden, Chris
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Hendrickson, Timothy J.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Dayan, Michael
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Houlihan, Sean Dae
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Kent, James
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Strauss, Ted
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Lee, John
|0 P:(DE-HGF)0
|b 17
700 1 _ |a To, Isaac
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Markiewicz, Christopher J.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Lukas, Darren
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Butler, Ellyn R.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Thompson, Todd
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Termenon, Maite
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Smith, David V.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Macdonald, Austin
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Kennedy, David N.
|0 P:(DE-HGF)0
|b 26
773 _ _ |a 10.21105/joss.05839
|g Vol. 9, no. 99, p. 5839 -
|0 PERI:(DE-600)2891760-1
|n 99
|p 5839 -
|t The journal of open source software
|v 9
|y 2024
|x 2475-9066
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1031830/files/10.21105.joss.05839.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1031830/files/10.21105.joss.05839.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1031830/files/10.21105.joss.05839.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1031830/files/10.21105.joss.05839.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1031830/files/10.21105.joss.05839.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1031830
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Center for Open Neuroscience, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)177087
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-09-10T14:45:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-09-10T14:45:56Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2024-09-10T14:45:56Z
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21