| Hauptseite > Workflowsammlungen > Publikationsgebühren > CFD Modelling of Hydrogen Production via Water Splitting in OxygenMembrane Reactors > print | 
| 001 | 1031833 | ||
| 005 | 20250701125917.0 | ||
| 024 | 7 | _ | |a 10.3390/membranes14100219 |2 doi  | 
| 024 | 7 | _ | |a 10.34734/FZJ-2024-05848 |2 datacite_doi  | 
| 024 | 7 | _ | |a 39452831 |2 pmid  | 
| 024 | 7 | _ | |a WOS:001342790600001 |2 WOS  | 
| 037 | _ | _ | |a FZJ-2024-05848 | 
| 082 | _ | _ | |a 570 | 
| 100 | 1 | _ | |a Bittner, Kai |0 P:(DE-Juel1)191155 |b 0 |e Corresponding author |u fzj  | 
| 245 | _ | _ | |a CFD Modelling of Hydrogen Production via Water Splitting in OxygenMembrane Reactors | 
| 260 | _ | _ | |a Basel |c 2024 |b MDPI  | 
| 336 | 7 | _ | |a article |2 DRIVER  | 
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite  | 
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1729660822_26265 |2 PUB:(DE-HGF)  | 
| 336 | 7 | _ | |a ARTICLE |2 BibTeX  | 
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID  | 
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote  | 
| 520 | _ | _ | |a The utilization of oxygen transport membranes enables the production of high-purityhydrogen by the thermal decomposition of water below 1000 ◦C. This process is based on a chemicalpotential gradient across the membrane, which is usually achieved by introducing a reducing gas.Computational fluid dynamics (CFD) can be used to model reactors based on this concept. In thisstudy, a modelling approach for water splitting is presented in which oxygen transport throughthe membrane acts as the rate-determining process for the overall reaction. This transport stepis implemented in the CFD simulation. Both gas compartments are modelled in the simulations.Hydrogen and methane are used as reducing gases. The model is validated using experimental datafrom the literature and compared with a simplified perfect mixing modelling approach. Althoughthe main focus of this work is to propose an approach to implement the water splitting in CFDsimulations, a simulation study was conducted to exemplify how CFD modelling can be utilized indesign optimization. Simplified 2-dimensional and rotational symmetric reactor geometries werecompared. This study shows that a parallel overflow of the membrane in an elongated reactor isadvantageous, as this reduces the back diffusion of the reaction products, which increases the meandriving force for oxygen transport through the membrane. | 
| 536 | _ | _ | |a 1232 - Power-based Fuels and Chemicals (POF4-123) |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 0  | 
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de | 
| 700 | 1 | _ | |a Margaritis, Nikolaos |0 P:(DE-Juel1)157695 |b 1 |u fzj  | 
| 700 | 1 | _ | |a Schulze-Küppers, Falk |0 P:(DE-Juel1)129660 |b 2 |u fzj  | 
| 700 | 1 | _ | |a Wolters, Jörg |0 P:(DE-Juel1)133776 |b 3 |u fzj  | 
| 700 | 1 | _ | |a Natour, Ghaleb |0 P:(DE-Juel1)142196 |b 4 |u fzj  | 
| 773 | _ | _ | |a 10.3390/membranes14100219 |g Vol. 14, no. 10, p. 219 - |0 PERI:(DE-600)2614641-1 |n 10 |p 219 - |t Membranes |v 14 |y 2024 |x 2077-0375  | 
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031833/files/Invoice_MDPI_membranes-3248309_1994.37EUR.pdf | 
| 856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/1031833/files/Invoice_MDPI_membranes-3248309_1994.37EUR.gif?subformat=icon  | 
| 856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/1031833/files/Invoice_MDPI_membranes-3248309_1994.37EUR.jpg?subformat=icon-1440  | 
| 856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/1031833/files/Invoice_MDPI_membranes-3248309_1994.37EUR.jpg?subformat=icon-180  | 
| 856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/1031833/files/Invoice_MDPI_membranes-3248309_1994.37EUR.jpg?subformat=icon-640  | 
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1031833/files/membranes-14-00219.pdf  | 
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1031833/files/membranes-14-00219.gif?subformat=icon  | 
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1031833/files/membranes-14-00219.jpg?subformat=icon-1440  | 
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1031833/files/membranes-14-00219.jpg?subformat=icon-180  | 
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1031833/files/membranes-14-00219.jpg?subformat=icon-640  | 
| 909 | C | O | |o oai:juser.fz-juelich.de:1031833 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery  | 
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)191155  | 
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)157695  | 
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129660  | 
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)133776  | 
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)142196  | 
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0  | 
| 914 | 1 | _ | |y 2024 | 
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC  | 
| 915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26  | 
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC  | 
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26  | 
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26  | 
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID  | 
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26  | 
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MEMBRANES-BASEL : 2022 |d 2024-12-05  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-05  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-05  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-09-17T11:22:08Z  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-09-17T11:22:08Z  | 
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-09-17T11:22:08Z  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-05  | 
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-05  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-05  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-05  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-05  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-05  | 
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-05  | 
| 920 | _ | _ | |l yes | 
| 920 | 1 | _ | |0 I:(DE-Juel1)ZEA-1-20090406 |k ZEA-1 |l Zentralinstitut für Technologie |x 0  | 
| 980 | 1 | _ | |a APC | 
| 980 | 1 | _ | |a FullTexts | 
| 980 | _ | _ | |a journal | 
| 980 | _ | _ | |a VDB | 
| 980 | _ | _ | |a UNRESTRICTED | 
| 980 | _ | _ | |a I:(DE-Juel1)ZEA-1-20090406 | 
| 980 | _ | _ | |a APC | 
| 981 | _ | _ | |a I:(DE-Juel1)ITE-20250108 | 
| Library | Collection | CLSMajor | CLSMinor | Language | Author | 
|---|