%0 Conference Paper
%A Guasco, Laura
%A Khaydukov, Yury N.
%A Keller, Thomas
%A Saerbeck, Thomas
%A Pütter, Sabine
%T Hydrogen absorption induced switching of the easy axis in Pt/Co/Pt
%M FZJ-2024-05866
%D 2024
%X Pt/Co/Pt heterostructures with perpendicular magnetic anisotropy (PMA) are traditionally used for magnetic recording to achieve high magnetic data storage density. PMA can be tuned by e.g. thin film thickness, strain, ion bombardment or temperature. Recently, it has been shown that the absorption of hydrogen in the heavy metal modifies the interfacial spin-orbit coupling and hence reduces the PMA [1, 2, 3]. As a result, magnetic hydrogen sensing can be performed, which was studied in an all-solid-state device and achieves in a Co/GdOx thin film system reversible and non-destructive toggling of magnetic anisotropy at room temperature. [4]Polarized neutron reflectivity is an effective tool for studying the hydrogen uptake and its impact on the magnetic properties in PMA systems. [2, 5] Recently, resonance enhanced polarized neutron reflectometry (RNR) has proven to be a quantitative method for the determination of the hydrogen concentration with high time resolution. [Guas22]In this contribution we will study the impact of hydrogen uptake on the spin reorientation transition in polycrystalline Pt/Co/Pt trilayers sandwiched by 25 nm Nb layers on MgO(001) substrates fabricated by molecular beam epitaxy and relate it to the hydrogen concentration. The feasibility of the Pt/Co/Pt trilayers will be discussed. [1] S. M. Valvidares, et al., Phys. Rev. B 81, (2010) 024415[2] K. Munbodh, et al., Phys. Rev. B 83 (2011) 094432[3] C. S. Chang, M. Kostylev and E. Ivanov, Appl. Phys. Lett. 102 (2013) 142405[4] A. J. Tan et al. Nature Materials 18 (2019) 35[5] G. Causer et al., ACS Appl. Mater. Interfaces 38 (2019) 35420[6] L. Guasco et al., Nature Comm. 13 (2022) 1486
%B International Colloquium on Magnetic Films and Surfaces
%C 7 Jul 2024 - 12 Jul 2024, Perugia (Italy)
Y2 7 Jul 2024 - 12 Jul 2024
M2 Perugia, Italy
%F PUB:(DE-HGF)6
%9 Conference Presentation
%U https://juser.fz-juelich.de/record/1031855