

27th Congress of the European Sleep Research Society

Seville, Spain I 24 – 27 September 2024

Assessing the effects of total and partial sleep deprivation on glymphatic indices using the ENIGMA-Sleep cohorts

J.D. ELBERSE^{1,2}, T. ÅKERSTEDT^{12,13}, M. CHEE³, J. CHOUPAN⁴, C. CHU^{5,6}, N. CROSS⁷, R. CUSTER⁸, T. T. DANG-VU⁷, D. ELMENHORST^{6,9,10}, E. ELMENHORST¹¹, T. ELVSÅSHAGEN^{16,17,18}, S. GHORBANI³, C. GROVA⁷, F. HOFFSTAEDTER^{1,2}, S. HOLST^{22,23}, N. JAHANSHAD⁵, H. LANDOLT²⁴, M. NEDERGAARD²⁵, G. NILSONNE^{12,13}, A. OLSEN^{19,20,21}, J. ONG³, P. PEIGNEUX^{14,15}, F. B. POMARES⁷, H. SMEVIK^{19,21}, K. SPIEGELHALDER²⁶, W. STEE^{14,15}, S. TAMM¹², S. THOMOPOULOS⁴, P. THOMPSON⁴, N. ZAK^{16,17}, C. VON GALL¹, S. B. EICKHOFF^{1,2}, G. POUDEL²⁷, M. TAHMASIAN^{1,2}, FOR THE ENIGMA-SLEEP WORKING GROUP.

1. Institute of Systems Neuroscience, Medical Faculty and University and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany; 2. Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany; 3. Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore; 4. Imaging Genetics Center (IGC), Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, USA; 5. National Key Laboratory (SCNLab), Concordia to School of the Brain (INM-2), Research Center Jülich, Jülich, Germany; 7. Sleep, Cognition, and Neuroimaging Laboratory (SCNLab), Concordia to School of Medicine, Molecular Organization of the Brain (INM-2), Research Center Jülich, Jülich, Germany; 7. Sleep, Cognition, and Neuroimaging Laboratory (SCNLab), Concordia to School of Medicine, Molecular Organization of the Brain (INM-2), Research Center Jülich, Jülich, Germany; 7. Sleep, Cognition, and Neuroimaging Laboratory (SCNLab), Concordia to School of Medicine, Molecular Organization of the Brain (INM-2), Research Center Jülich, Jülich, Germany; 7. Sleep, Cognition, and Neuroimaging Laboratory (SCNLab), Concordia to School of Medicine, Molecular Organization of the Brain (INM-2), Research Center Jülich, Jülich, Germany; 7. Sleep, Cognition, and Neuroimaging Laboratory (SCNLab), Concordia to School of Medicine, Molecular Organization of the Brain (INM-2), Research Center Jülich, Jülich, Germany; 7. Sleep, Cognition, and Neuroimaging Laboratory (SCNLab), Concordia to School of Medicine, Molecular Organization of the Brain (INM-2), Research Center Jülich, Jülich, Germany; 7. Sleep, Cognition, And Neuroimaging Laboratory (SCNLab), Concordia to School of Medicine, Molecular Organization of the Brain (INM-2), Research Center Jülich, Jülich, Germany; 7. Sleep, Cognition, And Neuroimaging Laboratory (SCNLab), Concordia to School of Medicine, Molecular Organization of the Brain (INM-2), Research Center Jülich, Germany; 7. Sleep, Cognition, And Neuroimaging Laboratory (SCNLab), Concordia to School of Medicine, Molecular Organization of the Brain (INM-2), Research Center Jülich, Germany; 7. Sleep, Cognition of the Brain (INM-2), Research Center Jülich, Germany; 7. Sleep, Cognition of the Brain (INM-2), Research Center Jülich, Germany; 7. Sleep, Cognition of the Brain (INM-2), Research Center Jülich, Germany; 7. Sleep, Cognition of University, Montreal, Canada; 8. Laboratory of Neuro Imaging (LONI), Mark and Mary Stevens Neuroimaging and Informatics Institute of Nuclear Medicine, Encountry of Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, USA; 9. Department of Nuclear Medicine, Encountry of Neuro Imaging (LONI), Mark and Mary Stevens Neuroimaging and Informatics Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany; 12. Department of Clinical Neuroscience Institute, Université Libre de Bruxelles de B (ULB), Brussels, Belgium; 15. GIGA - Cyclotron Research Centre - In Vivo Imaging, University of Oslo, Norway; 17. Department of Psychology, Oslo University of Slo, Norway; 18. Department of Psychology, Oslo University of Slo, Norway; 18. Department of Psychology, Oslo University of Oslo, Norway; 19. Department of Psychology, Oslo University of Oslo, Norway; 18. Department of Psychology, Oslo University of Oslo, Norway; 19. Department of Psychology, Oslo University of Oslo, Norway; 19. Department of Psychology, Oslo University of Oslo, Norway; 19. Department of Psychology, Oslo University of Oslo, Norway; 19. Department of Psychology, Oslo University of Oslo, Norway; 19. Department of Oslo, Nor Norwegian University of Science and Technology, Trondheim, Norway; 20. Clinic of Rehabilitation, St. Olavs Hospital, Trondheim, Norway; 21. NorHEAD - Norwegian Centre for Headache Research Unit, Copenhagen University Hospital, Trondheim, Norway; 21. NorHEAD - Norwegian Centre for Headache Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland; 24. Institute for Health Research, Faculty of Health R Sciences, Australian Catholic University, Melbourne, Australia

INTRODUCTION

Background

- ☐ Tracer studies in humans have shown that sleep deprivation has long-lasting adverse effects on waste clearance by the glymphatic system [1].
- ☐ This is reflected by major changes in multiple glymphatic MRI indices [2].
- ☐ Using a large, multi-site dataset (n = 678) provided by ENIGMA-SLEEP, we aim to assess the effect of partial (ca. 4 hr) and total (24 hr) sleep deprivation (SD) on 4 glymphatic MRI indices.

Hypotheses

- One night of SD significantly impairs glymphatic function: exhibited by increased PVS-VF, CP-VF, and rFWI; decreased DTI-ALPS.
- ☐ Abnormalities are more severe in total SD compared to partial SD.

DATA Figure 1: Trajectory of the ENIGMA-Sleep Data T1-weighted Stockholm < Singapore Diffusion-weighted Melbourne **PVS-VF**: CP-VF: rFWI: **DTI-ALPS: Choroid Plexus Relative Free Water** Perivascular Space Diffusion ALong the **Volume Fraction Volume Fraction** Perivascular Space Index

METHODS

Anatomical

- ☐ T1 scans were preprocessed using SMRIPrep [3].
- ☐ Choroid plexus and intracranial volume was obtained during Freesurfer reconstruction.
- □ PVS volume was obtained using the pretrained SHIVA-PVS U-net by Boutinaud et al. [4].

Diffusion

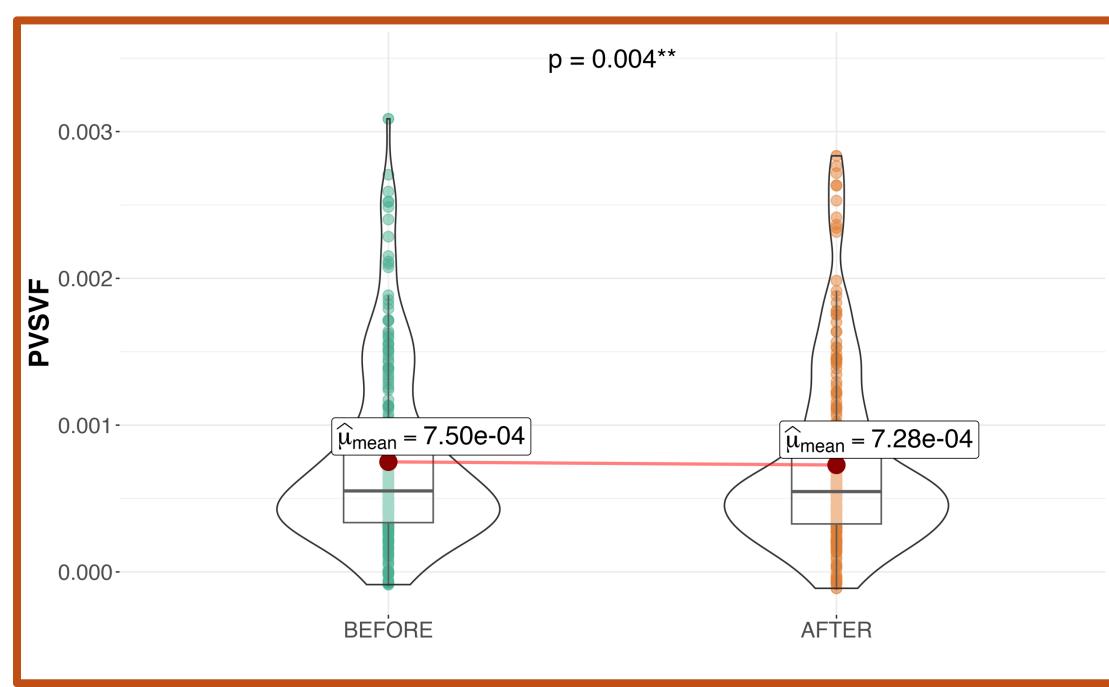
- □ DTI scans were preprocessed using QSIPrep [3].
- ☐ Free water indices were calculated using Dipy's FW elimination model and Freesurfer's WM mask
- □ DTI-ALPS was calculated in MNI space using the Liu & Barisano et al. pipeline [5].

Statistics

- ☐ A mixed linear model was used to assess the changes in glymphatic indices between normal sleep and the SD condition.
- ☐ Indices were **harmonized** using neuroCombat [6] and corrected for age, sex, BMI, and chronotype.

RESULTS

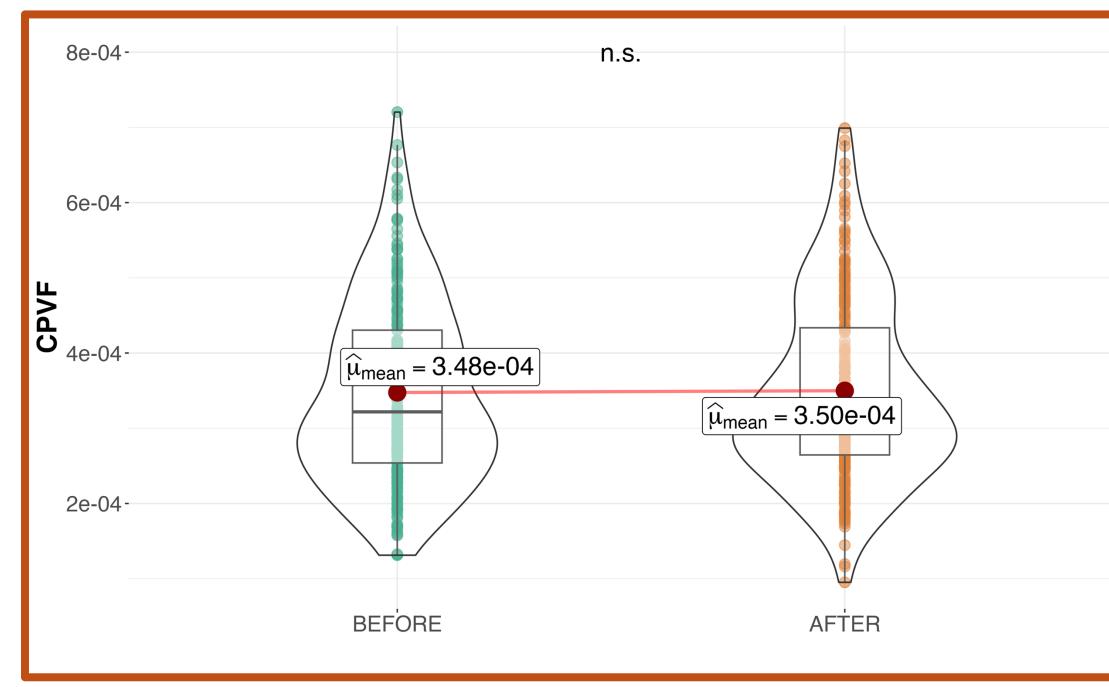
Main Findings

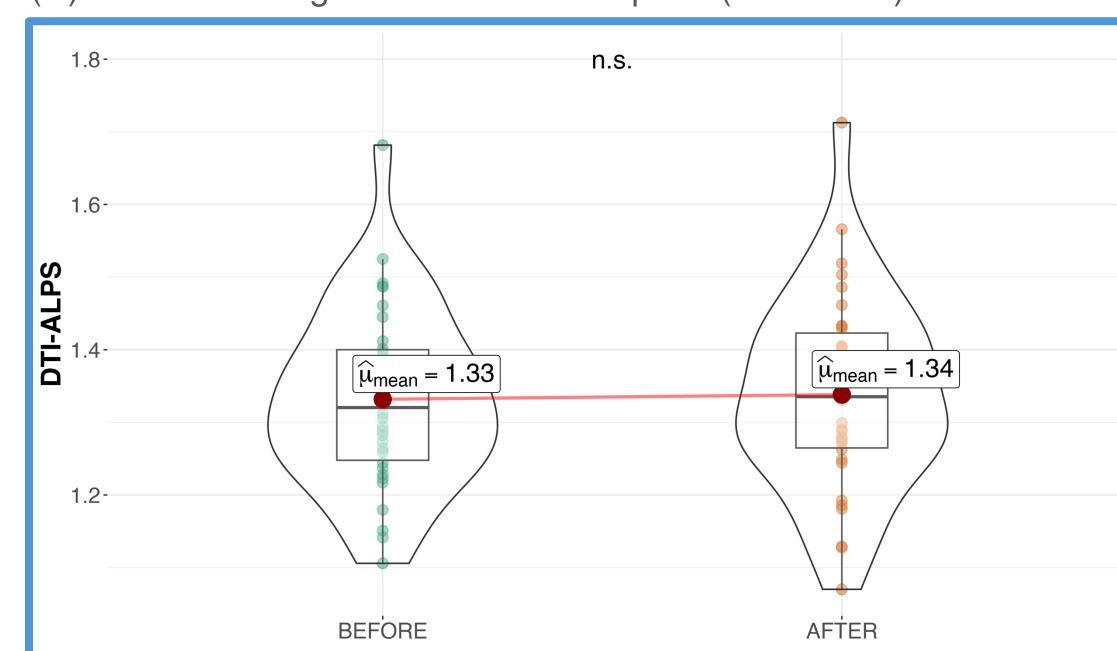

- ☐ Sleep deprivation was associated with a significantly reduced PVS volume (p = 0.004) and **FW index (**p = 0.047).
- ☐ There was no significant change in the CP volume or the DTI-ALPS index following sleep deprivation.
- ☐ Total sleep deprivation was associated with a more pronounced **PVS volume** reduction when compared to partial sleep deprivation (p = 0.001).

Additional Findings


- ☐ Age was associated with increased PVS volume (p < 0.000), increased CP volume (p < 0.000), and a decreased DTI-ALPS index (p = 0.022).
- ☐ Male sex was associated with a higher FW index (p < 0.000)
- ☐ Chronotype 1 ("Morning Person") was associated with increased PVS volume (p = 0.002)
- ☐ Chronotype 2 ("Evening Person") was associated with a reduced FW index (p = 0.028)

Figure 2: Glymphatic Indices Before and After Sleep Deprivation


(A) Perivascular Space Volume Fraction (PVS-VF)


(C) Relative Free Water Index (rFWI)

(B) Choroid Plexus Volume Fraction (CP-VF)

(**D**) Diffusion Along the Perivascular Space (DTI-ALPS)

CONCLUSIONS

☐ The absence of concurrent abnormalities across 4 glymphatic indices suggests that glymphatic function is not significantly altered.

- ☐ The observed reduction in PVS volume may be due to attenuated CSF influx associated with prolonged wakefulness
- ☐ A reduction in the FW index is likely related to microstructural changes in the WM following sleep deprivation [8].

REFERENCES

- 1. Eide, Per Kristian, et al. *Brain* 144.3 (2021): 863-874.
- 2. Kamagata, Koji, et al. Journal of Magnetic Resonance Imaging 59.5 (2024): 1476-1493.
- 3. Botvinik, In. "Neurolmaging PREProcessing toolS (NiPreps)."
- 4. Boutinaud, Philippe, et al. Frontiers in neuroinformatics 15 (2021): 641600.
- 5. Liu, Xiaodan, et al. Alzheimer's & Dementia 19 (2023): e073378.Botvinik, In. "NeuroImaging PREProcessing toolS (NiPreps)."
- 6. Richter, Sophie, et al. Neuroimage: Reports 2.4 (2022): 100136
- 7. Shih, Nien-Chu, et al. Sleep Medicine 111 (2023): 170-179.
- 8. Elvsåshagen, Torbjørn, et al. *PloS one* 10.5 (2015): e0127351 Figure 1 was made with Biorender (https://biorender.com)

CONTACT

J. D. ELBERSE: j.elberse@fz-juelich.de

M. TAHMASIAN: m.tahmasian@fz-juelich.de