001031975 001__ 1031975
001031975 005__ 20250203133214.0
001031975 0247_ $$2doi$$a10.1111/ejss.13587
001031975 0247_ $$2ISSN$$a0022-4588
001031975 0247_ $$2ISSN$$a1351-0754
001031975 0247_ $$2ISSN$$a1365-2389
001031975 0247_ $$2ISSN$$a2056-5240
001031975 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05899
001031975 0247_ $$2WOS$$aWOS:001337297400001
001031975 037__ $$aFZJ-2024-05899
001031975 041__ $$aEnglish
001031975 082__ $$a550
001031975 1001_ $$00000-0002-4890-889X$$aRütting, Louise$$b0$$eCollaboration author
001031975 245__ $$aSpruce and pine utilization of phosphorus in soil amended with 33 P ‐labelled hydroxylapatite
001031975 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2024
001031975 3367_ $$2DRIVER$$aarticle
001031975 3367_ $$2DataCite$$aOutput Types/Journal article
001031975 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729679903_26763
001031975 3367_ $$2BibTeX$$aARTICLE
001031975 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031975 3367_ $$00$$2EndNote$$aJournal Article
001031975 520__ $$aMined rock phosphate is expected to become a scarce resource within the next few decades as global phosphorus (P) deposits are declining. As a result, mineral P fertilizer will be less available and more expensive. Therefore, improved knowledge is needed on other P resources, for example, apatite fertilizers derived from the by-products of iron mining. Forestry is a potential future consumer of apatite-rich products with the aim of obtaining more wood per hectare. The actual P availability in apatite to plants has so far been barely quantified. We therefore examined tree P uptake using 33P apatite under chamber-grown and outdoor conditions. We examined the P uptake for the two main conifer species spruce (Picea abies) and pine (Pinus sylvestris) used in Fenno-Scandinavian forestry. We synthesized 33P-enriched apatite and applied it to mesocosms with growing seedlings of spruce and pine. The P uptake from 33P-labelled hydroxylapatite was subsequently traced by (bio)imaging of radioactivity in the plants and by liquid scintillation counting (LSC) upon destructive harvest in all plant fractions (leaves, stem and roots) and rhizosphere soil. Two climatic conditions were compared, one at natural outdoor conditions and one set as 5°C warmer than the climate record from the previous years. Plant P uptake from 33P-labelled hydroxylapatite was enhanced in chamber-grown compared with outdoor seedlings for both tree species. This uptake was manifested in the clear radioactive images obtained over ca. 1 month after soil apatite application. Furthermore, all aboveground plant fractions of both spruce and pine seedlings showed a higher P uptake in warmer than colder daytime environments. The observed quantities and rates of P uptake from 33P-labelled hydroxylapatite by spruce (18 Bq g−1 hour−1) and pine (83 Bq g−1 hour−1; averages in chamber condition) are as to our knowledge unique observations. Natural forest soils in Sweden are often P-poor. Our research suggests that apatite-based P fertilization of spruce and pine forests can increase wood production by overcoming any existing P limitation.
001031975 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001031975 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001031975 7001_ $$0P:(DE-Juel1)129471$$aHofmann, Diana$$b1$$ufzj
001031975 7001_ $$0P:(DE-Juel1)129523$$aPütz, Thomas$$b2$$ufzj
001031975 7001_ $$0P:(DE-HGF)0$$aKonrad-Schmolke, Matthias$$b3
001031975 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b4$$ufzj
001031975 773__ $$0PERI:(DE-600)2020243-X$$a10.1111/ejss.13587$$gVol. 75, no. 5, p. e13587$$n5$$pe13587$$tEuropean journal of soil science$$v75$$x0022-4588$$y2024
001031975 8564_ $$uhttps://juser.fz-juelich.de/record/1031975/files/European%20J%20Soil%20Science_2024_R%C3%BCtting_Spruce.pdf$$yOpenAccess
001031975 8564_ $$uhttps://juser.fz-juelich.de/record/1031975/files/European%20J%20Soil%20Science_2024_R%C3%BCtting_Spruce.gif?subformat=icon$$xicon$$yOpenAccess
001031975 8564_ $$uhttps://juser.fz-juelich.de/record/1031975/files/European%20J%20Soil%20Science_2024_R%C3%BCtting_Spruce.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001031975 8564_ $$uhttps://juser.fz-juelich.de/record/1031975/files/European%20J%20Soil%20Science_2024_R%C3%BCtting_Spruce.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001031975 8564_ $$uhttps://juser.fz-juelich.de/record/1031975/files/European%20J%20Soil%20Science_2024_R%C3%BCtting_Spruce.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001031975 909CO $$ooai:juser.fz-juelich.de:1031975$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001031975 9101_ $$0I:(DE-HGF)0$$60000-0002-4890-889X$$aExternal Institute$$b0$$kExtern
001031975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129471$$aForschungszentrum Jülich$$b1$$kFZJ
001031975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129523$$aForschungszentrum Jülich$$b2$$kFZJ
001031975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b4$$kFZJ
001031975 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001031975 9141_ $$y2024
001031975 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
001031975 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-22
001031975 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001031975 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-22$$wger
001031975 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
001031975 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031975 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-28$$wger
001031975 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J SOIL SCI : 2022$$d2024-12-28
001031975 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001031975 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
001031975 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28
001031975 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28
001031975 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001031975 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-28
001031975 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-28
001031975 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001031975 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-28
001031975 920__ $$lyes
001031975 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001031975 980__ $$ajournal
001031975 980__ $$aVDB
001031975 980__ $$aUNRESTRICTED
001031975 980__ $$aI:(DE-Juel1)IBG-3-20101118
001031975 9801_ $$aFullTexts