001     1031975
005     20250203133214.0
024 7 _ |a 10.1111/ejss.13587
|2 doi
024 7 _ |a 0022-4588
|2 ISSN
024 7 _ |a 1351-0754
|2 ISSN
024 7 _ |a 1365-2389
|2 ISSN
024 7 _ |a 2056-5240
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05899
|2 datacite_doi
024 7 _ |a WOS:001337297400001
|2 WOS
037 _ _ |a FZJ-2024-05899
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Rütting, Louise
|0 0000-0002-4890-889X
|b 0
|e Collaboration author
245 _ _ |a Spruce and pine utilization of phosphorus in soil amended with 33 P ‐labelled hydroxylapatite
260 _ _ |a Oxford [u.a.]
|c 2024
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729679903_26763
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mined rock phosphate is expected to become a scarce resource within the next few decades as global phosphorus (P) deposits are declining. As a result, mineral P fertilizer will be less available and more expensive. Therefore, improved knowledge is needed on other P resources, for example, apatite fertilizers derived from the by-products of iron mining. Forestry is a potential future consumer of apatite-rich products with the aim of obtaining more wood per hectare. The actual P availability in apatite to plants has so far been barely quantified. We therefore examined tree P uptake using 33P apatite under chamber-grown and outdoor conditions. We examined the P uptake for the two main conifer species spruce (Picea abies) and pine (Pinus sylvestris) used in Fenno-Scandinavian forestry. We synthesized 33P-enriched apatite and applied it to mesocosms with growing seedlings of spruce and pine. The P uptake from 33P-labelled hydroxylapatite was subsequently traced by (bio)imaging of radioactivity in the plants and by liquid scintillation counting (LSC) upon destructive harvest in all plant fractions (leaves, stem and roots) and rhizosphere soil. Two climatic conditions were compared, one at natural outdoor conditions and one set as 5°C warmer than the climate record from the previous years. Plant P uptake from 33P-labelled hydroxylapatite was enhanced in chamber-grown compared with outdoor seedlings for both tree species. This uptake was manifested in the clear radioactive images obtained over ca. 1 month after soil apatite application. Furthermore, all aboveground plant fractions of both spruce and pine seedlings showed a higher P uptake in warmer than colder daytime environments. The observed quantities and rates of P uptake from 33P-labelled hydroxylapatite by spruce (18 Bq g−1 hour−1) and pine (83 Bq g−1 hour−1; averages in chamber condition) are as to our knowledge unique observations. Natural forest soils in Sweden are often P-poor. Our research suggests that apatite-based P fertilization of spruce and pine forests can increase wood production by overcoming any existing P limitation.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hofmann, Diana
|0 P:(DE-Juel1)129471
|b 1
|u fzj
700 1 _ |a Pütz, Thomas
|0 P:(DE-Juel1)129523
|b 2
|u fzj
700 1 _ |a Konrad-Schmolke, Matthias
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bol, Roland
|0 P:(DE-Juel1)145865
|b 4
|u fzj
773 _ _ |a 10.1111/ejss.13587
|g Vol. 75, no. 5, p. e13587
|0 PERI:(DE-600)2020243-X
|n 5
|p e13587
|t European journal of soil science
|v 75
|y 2024
|x 0022-4588
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1031975/files/European%20J%20Soil%20Science_2024_R%C3%BCtting_Spruce.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1031975/files/European%20J%20Soil%20Science_2024_R%C3%BCtting_Spruce.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1031975/files/European%20J%20Soil%20Science_2024_R%C3%BCtting_Spruce.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1031975/files/European%20J%20Soil%20Science_2024_R%C3%BCtting_Spruce.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1031975/files/European%20J%20Soil%20Science_2024_R%C3%BCtting_Spruce.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1031975
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-4890-889X
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129523
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145865
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-22
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J SOIL SCI : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21