001     1032003
005     20241023211805.0
024 7 _ |a 10.34734/FZJ-2024-05919
|2 datacite_doi
037 _ _ |a FZJ-2024-05919
041 _ _ |a English
100 1 _ |a Stern, Christian
|0 P:(DE-Juel1)190289
|b 0
|e Corresponding author
111 2 _ |a The Materials Science & Technology (MS&T) technical meeting and exhibition
|g MS&T24
|c Pittsburgh
|d 2024-10-06 - 2024-10-09
|w USA
245 _ _ |a Correlative characterization of plasma etching resistance of various aluminum garnets
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1729662025_23292
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Plasma etching is a vital step in semiconductor processing, requiring stringent cleanliness and reproducibility to achieve nanometer-sized transistors. As plasma parameters become more aggressive, YAG (Y3Al5O12) outperforms traditional materials in this application. This study employed reactive spark plasma sintering (SPS) to synthesize highly dense YAG ceramics. Additionally, yttrium was replaced with heavier lanthanoids (Er, Lu) to investigate the role of the A-site cation on the erosion behavior. The materials were exposed to fluorine-based etching plasmas of different corrosiveness. Successive characterization uncovered that less aggressive parameters did not trigger physical erosion, but induced a reaction layer. For in-depth analysis, a correlative method coupling ToF-SIMS and STEM-EDS was developed and characteristics of the chemical gradient were derived. Aggressive plasma parameters led to physical erosion that was characterized by profilometry. The study reveals that the chemical gradient under weak etching conditions cannot be used to predict the etch performance under more aggressive parameters.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
700 1 _ |a Schwab, Christian
|0 P:(DE-Juel1)194161
|b 1
700 1 _ |a Kindelmann, Moritz
|0 P:(DE-Juel1)174079
|b 2
700 1 _ |a Stamminger, Mark
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Park, Inhee
|0 P:(DE-Juel1)194615
|b 4
700 1 _ |a Hausen, Florian
|0 P:(DE-Juel1)167581
|b 5
|u fzj
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 6
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 7
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 8
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1032003/files/Slides.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1032003/files/Slides.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1032003/files/Slides.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1032003/files/Slides.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1032003/files/Slides.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1032003
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190289
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194161
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174079
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)194615
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167581
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)167581
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-2-20101013
|k IMD-2
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 2
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 3
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-2-20101013
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a I:(DE-82)080011_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21