001     1032004
005     20241210095447.0
024 7 _ |a 10.1145/3641825.3689494
|2 doi
024 7 _ |a WOS:001336540500090
|2 WOS
037 _ _ |a FZJ-2024-05920
100 1 _ |a Baker, Dirk Norbert
|0 P:(DE-Juel1)185995
|b 0
|e Corresponding author
111 2 _ |a VRST '24: 30th ACM Symposium on Virtual Reality Software and Technology
|c Trier Germany
|d 2024-10-09 - 2024-10-11
|w Germany
245 _ _ |a Hands-On Plant Root System Reconstruction in Virtual Reality
260 _ _ |c 2024
|b ACM New York, NY, USA
295 1 0 |a 30th ACM Symposium on Virtual Reality Software and Technology : [Proceedings] - ACM New York, NY, USA, 2024. - ISBN 9798400705359 - doi:10.1145/3641825.3689494
300 _ _ |a 1-2
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1730268784_26956
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a VRoot is an immersive extended reality reconstruction tool for root system architectures from 3D volumetric scans of soil columns. We have conducted a laboratory user study to assess the performance of new users with our software in comparison to established software. We utilize a plant model to derive a synthetic root architecture, providing a baseline for reconstruction. This demo showcases the processes and techniques contributing to exact and efficient manual root architecture reconstruction in Virtual Reality. The extraction task typically is the sparse graph-structure extraction from a 3D magnetic-resonance imaging (MRI) data set. We visualize the RSA directly within the MRI and offer selection-set-based methods of adapting and augmenting the root architecture. This application is in productive use at our partner institute, where it is used to analyze complex root images.
536 _ _ |a 2A3 - Remote Sensing (CARF - CCA) (POF4-2A3)
|0 G:(DE-HGF)POF4-2A3
|c POF4-2A3
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
536 _ _ |a 5121 - Supercomputing & Big Data Facilities (POF4-512)
|0 G:(DE-HGF)POF4-5121
|c POF4-512
|f POF IV
|x 2
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 3
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 4
536 _ _ |a DFG project G:(GEPRIS)390732324 - EXC 2070: PhenoRob - Robotik und Phänotypisierung für Nachhaltige Nutzpflanzenproduktion (390732324)
|0 G:(GEPRIS)390732324
|c 390732324
|x 5
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Selzner, Tobias
|0 P:(DE-Juel1)179508
|b 1
700 1 _ |a Göbbert, Jens Henrik
|0 P:(DE-Juel1)168541
|b 2
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 3
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 4
700 1 _ |a Hvannberg, Ebba Þóra
|0 0000-0002-8041-5542
|b 5
700 1 _ |a Schnepf, Andrea
|0 P:(DE-Juel1)157922
|b 6
700 1 _ |a Zielasko, Daniel
|0 0000-0003-3451-4977
|b 7
773 _ _ |a 10.1145/3641825.3689494
856 4 _ |u https://doi.org/10.1145/3641825.368949
909 C O |o oai:juser.fz-juelich.de:1032004
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185995
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179508
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168541
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157922
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l COOPERATION ACROSS RESEARCH FIELDS (CARFs)
|1 G:(DE-HGF)POF4-2A0
|0 G:(DE-HGF)POF4-2A3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Remote Sensing (CARF - CCA)
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5121
|x 2
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 3
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 2
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21