001     1032008
005     20250310131246.0
024 7 _ |a 10.1038/s41380-024-02780-6
|2 doi
024 7 _ |a 1359-4184
|2 ISSN
024 7 _ |a 1476-5578
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05924
|2 datacite_doi
024 7 _ |a 39406999
|2 pmid
024 7 _ |a WOS:001332746300003
|2 WOS
037 _ _ |a FZJ-2024-05924
082 _ _ |a 610
100 1 _ |a Saberi, Amin
|0 P:(DE-Juel1)190448
|b 0
|u fzj
245 _ _ |a Convergent functional effects of antidepressants in major depressive disorder: a neuroimaging meta-analysis
260 _ _ |a London
|c 2025
|b Macmillan
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738229951_8094
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BackgroundNeuroimaging studies have provided valuable insights into the macroscale impacts of antidepressants on brain functions in patients with major depressive disorder. However, the findings of individual studies are inconsistent. Here, we aimed to provide a quantitative synthesis of the literature to identify convergence of the reported findings at both regional and network levels and to examine their associations with neurotransmitter systems.MethodsThrough a comprehensive search in PubMed and Scopus databases, we reviewed 5258 abstracts and identified 36 eligible functional neuroimaging studies on antidepressant effects in major depressive disorder. Activation likelihood estimation was used to investigate regional convergence of the reported foci of antidepressant effects, followed by functional decoding and connectivity mapping of the convergent clusters. Additionally, utilizing group-averaged data from the Human Connectome Project, we assessed convergent resting-state functional connectivity patterns of the reported foci. Next, we compared the convergent circuit with the circuits targeted by transcranial magnetic stimulation therapy. Last, we studied the association of regional and network-level convergence maps with selected neurotransmitter receptors/transporters maps.ResultsNo regional convergence was found across foci of treatment-associated alterations in functional imaging. Subgroup analysis in the Treated > Untreated contrast revealed a convergent cluster in the left dorsolateral prefrontal cortex, which was associated with working memory and attention behavioral domains. Moreover, we found network-level convergence of the treatment-associated alterations in a circuit more prominent in the frontoparietal areas. This circuit was co-aligned with circuits targeted by “anti-subgenual” and “Beam F3” transcranial magnetic stimulation therapy. We observed no significant correlations between our meta-analytic findings with the maps of neurotransmitter receptors/transporters.ConclusionOur findings highlight the importance of the frontoparietal network and the left dorsolateral prefrontal cortex in the therapeutic effects of antidepressants, which may relate to their role in improving executive functions and emotional processing.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ebneabbasi, Amir
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rahimi, Sama
|0 P:(DE-Juel1)200160
|b 2
|u fzj
700 1 _ |a Sarebannejad, Sara
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sen, Zumrut Duygu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Graf, Heiko
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Walter, Martin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Sorg, Christian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Camilleri, Julia
|0 P:(DE-Juel1)172024
|b 8
|u fzj
700 1 _ |a Laird, Angela R.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Fox, Peter T.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Valk, Sofie L.
|0 P:(DE-Juel1)173843
|b 11
|u fzj
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 12
700 1 _ |a Tahmasian, Masoud
|0 P:(DE-Juel1)188400
|b 13
|e Corresponding author
773 _ _ |a 10.1038/s41380-024-02780-6
|0 PERI:(DE-600)1502531-7
|p 736–751
|t Molecular psychiatry
|v 30
|y 2025
|x 1359-4184
856 4 _ |u https://juser.fz-juelich.de/record/1032008/files/s41380-024-02780-6-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1032008
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190448
910 1 _ |a Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)190448
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)200160
910 1 _ |a Neuroscience Center, Goethe University, Frankfurt
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)200160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172024
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)173843
910 1 _ |a Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-Juel1)173843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)188400
910 1 _ |a Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-Juel1)188400
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-Juel1)188400
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL PSYCHIATR : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b MOL PSYCHIATR : 2022
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21