001032009 001__ 1032009
001032009 005__ 20250414120443.0
001032009 0247_ $$2doi$$a10.1093/brain/awae315
001032009 0247_ $$2ISSN$$a0006-8950
001032009 0247_ $$2ISSN$$a1460-2156
001032009 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05925
001032009 0247_ $$2pmid$$a39400198
001032009 0247_ $$2WOS$$aWOS:001434577200001
001032009 037__ $$aFZJ-2024-05925
001032009 082__ $$a610
001032009 1001_ $$0P:(DE-HGF)0$$aPetersen, Marvin$$b0$$eCorresponding author
001032009 245__ $$aEnhancing cognitive performance prediction by white matter hyperintensity connectivity assessment
001032009 260__ $$aOxford$$bOxford Univ. Press$$c2024
001032009 3367_ $$2DRIVER$$aarticle
001032009 3367_ $$2DataCite$$aOutput Types/Journal article
001032009 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734684034_26302
001032009 3367_ $$2BibTeX$$aARTICLE
001032009 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001032009 3367_ $$00$$2EndNote$$aJournal Article
001032009 520__ $$aWhite matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment and are a key imaging marker in evaluating brain health. However, WMH volume alone does not fully account for the extent of cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. Lesion network mapping (LNM) enables to infer if brain networks are connected to lesions and could be a promising technique for enhancing our understanding of the role of WMH in cognitive disorders. Our study employed LNM to test the following hypotheses: (1) LNM-informed markers surpass WMH volumes in predicting cognitive performance, and (2) WMH contributing to cognitive impairment map to specific brain networks.We analyzed cross-sectional data of 3,485 patients from 10 memory clinic cohorts within the Meta VCI Map Consortium, using harmonized test results in 4 cognitive domains and WMH segmentations. WMH segmentations were registered to a standard space and mapped onto existing normative structural and functional brain connectome data. We employed LNM to quantify WMH connectivity to 480 atlas-based gray and white matter regions of interest (ROI), resulting in ROI-level structural and functional LNM scores. We compared the capacity of total and regional WMH volumes and LNM scores in predicting cognitive function using ridge regression models in a nested cross-validation. LNM scores predicted performance in three cognitive domains (attention/executive function, information processing speed, and verbal memory) significantly better than WMH volumes. LNM scores did not improve prediction for language functions. ROI-level analysis revealed that higher LNM scores, representing greater connectivity to WMH, in gray and white matter regions of the dorsal and ventral attention networks were associated with lower cognitive performance.Measures of WMH-related brain network connectivity significantly improve the prediction of current cognitive performance in memory clinic patients compared to WMH volume as a traditional imaging marker of cerebrovascular disease. This highlights the crucial role of network integrity, particularly in attention-related brain regions, improving our understanding of vascular contributions to cognitive impairment. Moving forward, refining WMH information with connectivity data could contribute to patient-tailored therapeutic interventions and facilitate the identification of subgroups at risk of cognitive disorders.
001032009 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001032009 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001032009 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001032009 7001_ $$0P:(DE-HGF)0$$aCoenen, Mirthe$$b1
001032009 7001_ $$0P:(DE-HGF)0$$aDeCarli, Charles$$b2
001032009 7001_ $$0P:(DE-HGF)0$$aDe Luca, Alberto$$b3
001032009 7001_ $$0P:(DE-HGF)0$$avan der Lelij, Ewoud$$b4
001032009 7001_ $$0P:(DE-HGF)0$$aBarkhof, Frederik$$b5
001032009 7001_ $$0P:(DE-HGF)0$$aBenke, Thomas$$b6
001032009 7001_ $$0P:(DE-HGF)0$$aChen, Christopher P L H$$b7
001032009 7001_ $$0P:(DE-HGF)0$$aDal-Bianco, Peter$$b8
001032009 7001_ $$0P:(DE-HGF)0$$aDewenter, Anna$$b9
001032009 7001_ $$0P:(DE-HGF)0$$aDuering, Marco$$b10
001032009 7001_ $$0P:(DE-HGF)0$$aEnzinger, Christian$$b11
001032009 7001_ $$0P:(DE-HGF)0$$aEwers, Michael$$b12
001032009 7001_ $$0P:(DE-HGF)0$$aExalto, Lieza G$$b13
001032009 7001_ $$0P:(DE-HGF)0$$aFletcher, Evan M$$b14
001032009 7001_ $$0P:(DE-HGF)0$$aFranzmeier, Nicolai$$b15
001032009 7001_ $$0P:(DE-HGF)0$$aHilal, Saima$$b16
001032009 7001_ $$0P:(DE-HGF)0$$aHofer, Edith$$b17
001032009 7001_ $$0P:(DE-HGF)0$$aKoek, Huiberdina L$$b18
001032009 7001_ $$0P:(DE-HGF)0$$aMaier, Andrea B$$b19
001032009 7001_ $$0P:(DE-HGF)0$$aMaillard, Pauline M$$b20
001032009 7001_ $$0P:(DE-HGF)0$$aMcCreary, Cheryl R$$b21
001032009 7001_ $$0P:(DE-HGF)0$$aPapma, Janne M$$b22
001032009 7001_ $$0P:(DE-HGF)0$$aPijnenburg, Yolande A L$$b23
001032009 7001_ $$0P:(DE-HGF)0$$aSchmidt, Reinhold$$b24
001032009 7001_ $$0P:(DE-HGF)0$$aSmith, Eric E$$b25
001032009 7001_ $$0P:(DE-HGF)0$$aSteketee, Rebecca M E$$b26
001032009 7001_ $$0P:(DE-HGF)0$$avan den Berg, Esther$$b27
001032009 7001_ $$0P:(DE-HGF)0$$avan der Flier, Wiesje M$$b28
001032009 7001_ $$0P:(DE-HGF)0$$aVenkatraghavan, Vikram$$b29
001032009 7001_ $$0P:(DE-HGF)0$$aVenketasubramanian, Narayanaswamy$$b30
001032009 7001_ $$0P:(DE-HGF)0$$aVernooij, Meike W$$b31
001032009 7001_ $$0P:(DE-HGF)0$$aWolters, Frank J$$b32
001032009 7001_ $$0P:(DE-HGF)0$$aXu, Xin$$b33
001032009 7001_ $$0P:(DE-HGF)0$$aHorn, Andreas$$b34
001032009 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R$$b35$$ufzj
001032009 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B$$b36
001032009 7001_ $$0P:(DE-HGF)0$$aThomalla, Götz$$b37
001032009 7001_ $$0P:(DE-HGF)0$$aBiesbroek, J Matthijs$$b38
001032009 7001_ $$0P:(DE-HGF)0$$aJan Biessels, Geert$$b39
001032009 7001_ $$0P:(DE-HGF)0$$aCheng, Bastian$$b40
001032009 773__ $$0PERI:(DE-600)1474117-9$$a10.1093/brain/awae315$$gp. awae315$$n12$$p4265-4279$$tBrain$$v147$$x0006-8950$$y2024
001032009 8564_ $$uhttps://juser.fz-juelich.de/record/1032009/files/awae315.pdf$$yOpenAccess
001032009 909CO $$ooai:juser.fz-juelich.de:1032009$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001032009 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Neurology, University Medical Center Hamburg-Eppendorf , 20251 Hamburg , Germany Correspondence to: Marvin Petersen, MD, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany E-mail: mar.petersen@uke.de$$b0
001032009 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b35$$kFZJ
001032009 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b36$$kFZJ
001032009 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b36
001032009 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001032009 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001032009 9141_ $$y2024
001032009 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001032009 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001032009 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001032009 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001032009 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001032009 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-12$$wger
001032009 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN : 2022$$d2024-12-12
001032009 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001032009 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001032009 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
001032009 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
001032009 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001032009 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-12
001032009 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-12
001032009 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-12
001032009 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001032009 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bBRAIN : 2022$$d2024-12-12
001032009 920__ $$lyes
001032009 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001032009 980__ $$ajournal
001032009 980__ $$aVDB
001032009 980__ $$aUNRESTRICTED
001032009 980__ $$aI:(DE-Juel1)INM-7-20090406
001032009 9801_ $$aFullTexts