

## **EUROHPC DEVELOPMENT PROJECT(S)**

Scalasca / Score-P (exa-)scalable parallel performance tools

2024/10/22 | BRIAN WYLIE [b.wylie@fz-juelich.de]









**Giant scale** 

1018

1000000 000000 000000

fz-juelich.de/jupiter | #exa\_jupiter

Disclaimer: content provided by Al.

**Lightning speed** 











## **EUROHPC COMPUTERS & CENTRES OF EXCELLENCE**











### **OUTLINE**

- Jülich Supercomputing Centre open-source scalable parallel performance tools
  - Scalasca: scalable performance analysis of large-scale parallel applications
  - Score-P: community-developed instrumentation & measurement infrastructure
- Performance Optimisation & Productivity Centre of Excellence (POP CoE)
  - Assessments for HPC application domain CoEs
    - SPECFEM3D on Leonardo-B [ChEESE CoE]
    - Tandem on LUMI-C [ChEESE CoE]
    - ESPResSo on Vega-C [MultiXscale CoE]
    - ecTrans\_dwarf on Karolina-G [ESiWACE CoE]
  - Training: CASTIEL2/EuroCC Training Sprint on Karolina (CPUs & GPUs)









Developed to support scalable performance analysis of large-scale parallel applications

- available under open-source license from www.scalasca.org
- offers flexible runtime summarization/profiling and event tracing
- based on Score-P instrumentation & measurement infrastructure and CUBE analysis report utilities & explorer GUI
- MPI + OpenMP, extended to support Pthreads and other threading paradigms plus accelerator kernel offload with OpenACC, OpenCL, CUDA, HIP, etc.
- support for large-scale HPC computer systems and clusters
  - used with up to 1.75 M threads (or 1.28 M processes) on JUQUEEN BG/Q







- Centre of Excellence in HPC Applications' Performance Optimisation & Productivity
- JSC 'flagship' codes to be deployed on (all) EuroHPC supercomputer systems
  - M12 goal of up-to-date deployments on 4 systems (both CPU & GPU partitions)
    - on target for publicly-installed modules to be accessible by 2024/12
  - Score-P/8.4 available on Karolina & Leonardo\*
    - older installations available on MeluXina, MN5, Vega\* (and LUMI-C)
  - Scalasca/2.6.1 available on Karolina, Leonardo\*, MeluXina, Vega\* (and MN5-GPP)
- Engaged with CASTIEL2 CI/CD task
  - following progress of EESSI & GitLab/Jacamar prototype solutions
  - build & install recipes in IT4I EasyConfigs repository



## SPECFEM3D@Leo-B strong scaling





| Problem size<br>MPI GPU ranks                | 1024x1024<br><b>8</b> | 1024x1024<br><b>64</b> | 1024x1024<br><b>128</b> | 1024x1024<br><b>256</b> | 1024x1024<br><b>512</b> |
|----------------------------------------------|-----------------------|------------------------|-------------------------|-------------------------|-------------------------|
| Wall time [s]                                | 2001.806              | 255.948                | 135.478                 | 73.846                  | 61.400                  |
| Global scaling efficiency                    | 0.995                 | 0.973                  | 0.919                   | 0.843                   | 0.507                   |
| <ul> <li>Computation time scaling</li> </ul> | 1.000                 | 0.987                  | 0.972                   | 0.950                   | 0.937                   |
| - Parallel efficiency                        | 0.995                 | 0.986                  | 0.945                   | 0.887                   | 0.541                   |
| Load balance efficiency                      | 1.000                 | 0.998                  | 0.996                   | 0.994                   | 0.989                   |
| Orchestration efficiency                     | 0.995                 | 0.988                  | 0.948                   | 0.892                   | 0.547                   |



#### POP3\_AR\_002

- Fortran90 parallelised with MPI+CUDA (1 rank/GPU)
- iterate\_time (solver) chosen as Focus of Analysis
- Good strong scaling up to 256 GPUs
- With 512 GPUs no longer able to sufficiently overlap MPI communication with CUDA kernels



DOI 10.5281/zenodo.13643996

# SPECFEM3D@Leo-B (512 GPUs)





compute\_add\_sources\_kernel executed on single GPU (#243) is rather short, however, results in all other GPUs having very long synchronization times in following transfer boundary from device a

over two-thirds of CUDA synch time
 and over 30% of total CPU time





# Tandem@LUMI-C strong scaling



0.783

0.638



| MPI ranks                                                                  | <b>128</b>             | <b>512</b>             | <b>2048</b>           | <b>4096</b>           | 8192                  |
|----------------------------------------------------------------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|
| MPI configuration                                                          | n1p128                 | n16p32                 | n16p128               | n32p128               | n64p128               |
| Solve iterations                                                           | 18                     | 18                     | 19                    | 20                    | 20                    |
| Wall-clock time [s]<br>Computation time [s]                                | <b>850.78</b> 95671.33 | <b>216.77</b> 74046.30 | <b>74.76</b> 76451.98 | <b>50.73</b> 78419.05 | <b>39.42</b> 78618.84 |
| Global scaling efficiency - Computation time scaling - Parallel efficiency | 0.879                  | 0.862                  | 0.624                 | 0.461                 | 0.296                 |
|                                                                            | 1.000                  | 1.292                  | 1.251                 | 1.221                 | 1.217                 |
|                                                                            | 0.879                  | 0.667                  | 0.499                 | 0.377                 | 0.243                 |

0.882

0.904



#### **POP3 AR 009**

- C++17 with MPI (& CUDA) built upon PETSc
- static\_problem (incl. solver) chosen as Focus of Analysis
- Efficiency drops below 80% for more than 512 CPUs
- MPI pt2pt communication time grows significantly
- MPI collective communication time varies



0.735

# Tandem@LUMI-C 8192p MPI usage





Each grid row corresponds to processes within a node



split after n elements: 128

#### Computation time (above)

MPI rank 8128 requires notably longer than others - more than twice the mean

#### MPI P2P bytes transferred (right)

rank 8128 sends & receives several times more data than any others



### TRAINING COLLABORATIONS

#### Co-organised events & contributions to third-party events



- Training Sprint with Czechia+5 nearby EuroCC HPC National Competence Centres (NCCs)
  - 3-day hands-on virtual VI-HPS Tuning Workshop using Karolina CPUs & GPUs
    - bring-your-own-code for expert coaching in performance analysis/tuning
    - presentation & demonstration of all POP CoE tools (except energy assessment tools)
- 3 other in-person VI-HPS Tuning Workshops (CALMIP/F, NHR/D, LRZ/D)
- DiRAC/N8 Performance Analysis Workshop Series (DurhamU/UK)
- Archer2 AMD GPU performance analysis workshop (EPCC/UK)
- HPC Spectra Int'l Summer School (R-CCS/J) & EPICURE GPU hackathon (CINECA/I)
  - additional workshop using Fugaku proposed for HANAMI support not supported (yet)
- ISC HPC half-day hands-on tutorial on POP methodology & tools



### **EHPC-DEV PROJECT ALLOCATIONS**



EuroHPC
Development
Access Calls

- 12 month projects
- no project extensions allowed(?)
- arrangement specific for HPC CoEs?



### **PLANS**

#### Subject to revision

- Transition to project/allocations of POP CoE as existing allocations expire
- Work with HEs (and EPICURE?) on installations & modules for latest Scalasca/Score-P
- Continue to collaborate with CASTIEL2 on CI/CD prototype(s)
- Follow-on assessments (POP second-level services) for CoE lighthouse codes
- First assessments for additional CoE lighthouse codes
  - neko & nekRS on JUWELS-Booster/JEDI/JUPITER, ...
- Co-organise advanced performance analysis/tuning hackathons with EPICURE & HANAMI
- Identify NCC partner(s) for 2025 (and 2026) Training Sprint / VI-HPS Tuning Workshop
  - prioritise 'widening' and 'low R&I performing' states





## **Performance Optimisation & Productivity**

Centre of Excellence in HPC

## Contact:

https://www.pop-coe.eu

□ pop@bsc.es

X@POP\_HPC

youtube.com/POPHPC



