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1.  INTRODUCTION

The neuroimaging literature of the last three decades has 

provided a wealth of findings on structural and functional 

brain–behavior relationships as well as brain-related 

alterations in certain diseases. Meta-analytic approaches 

to neuroimaging results, such as the widely used Activa-

tion Likelihood Estimation (ALE) algorithm (Eickhoff et al., 

2012; Turkeltaub et  al., 2002), are important tools to 
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consolidate these findings and to overcome problems of 
individual studies (Müller, Cieslik, et  al., 2018). Beyond 
testing for brain regions consistently found across stud-
ies, meta-analyses also provide the possibility to directly 
and statistically compare the results of two individual 
meta-analyses, using conjunctions and meta-analytic 
contrasts (Eickhoff et al., 2011; Laird et al., 2005). While 
conjunctions assess overlap in convergence, contrast 
analyses on the meta-analytic level reveal those voxels of 
the brain in which convergence in one meta-analysis 
(e.g., across studies on face processing) is significantly 
stronger than in another (e.g., across studies on working 
memory). Meta-analytic contrasts, therefore, provide a 
possibility to statistically compare aggregated neuroim-
aging data and, since their introduction, have enjoyed 
great popularity for comparing different experimental 
conditions (Owen et al., 2005; Swick et al., 2011; Wesley 
& Bickel, 2014), mental processes (Caspers et al., 2010; 
Gan et al., 2022; Langner et al., 2018), or different groups 
(Costa et al., 2021; Fehlbaum et al., 2022; Hill et al., 2014; 
Stevens & Hamann, 2012).

Meta-analytic contrasts are particularly useful to 
examine previously untested (or poorly studied) differ-
ences. Kogler et al. (2015), for example, reported similar-
ities and differences between psychological and 
physiological stress that have not been tested before in 
single fMRI studies and mainly found, contrary to previ-
ous assumptions, differential convergence for both types 
of stress. Rottschy et al. (2012) assessed differences in 
working memory based on stimulus material, task load, 
and paradigms and reported regional specific conver-
gence within the left dorsolateral prefrontal cortex. Impor-
tantly, meta-analytic contrasts can also help to break 
down larger cognitive concepts into their subcompo-
nents. For example, Kogler et al. (2020) found supporting 
evidence for a multidimensional concept of empathy, 
Zhang et al. (2021) for the three subcomponents of exec-
utive functions, and Langner et al. (2018) for differences 
between top–down emotion and action regulation, which 
they confirmed through additional analyses.

In addition, meta-analytic contrasts are also applied to 
test (previously not investigated) group differences, such 
as different ages (Fehlbaum et  al., 2022; Yaple et  al., 
2019; Zhang et al., 2021) or clinical groups (Costa et al., 
2021; Klugah-Brown et  al., 2021). This is an important 
potential of contrasts on the meta-analytic level as stud-
ies comparing different clinical groups to each other as 
well as to a control group are quite costly.

These examples illustrate some of the many uses of 
meta-analytic comparisons. Especially, as the number of 
neuroimaging results continues to increase, many more 
applications of meta-analytic comparisons become pos-
sible. While all of them can theoretically also be carried 

out in individual fMRI studies, meta-analytic contrasts 
take advantage of the wealth of already conducted 
experiments by looking at them from a different angle 
and are a promising exploratory method for hypothesis 
generation.

However, while meta-analytic contrasts offer new pos-
sibilities for investigating different concepts, it should be 
noted that the results of meta-analytic contrasts may not 
necessarily reflect differences in brain activation, despite 
often being interpreted as such. Classic ALE meta-
analyses are conducted across coordinates derived from 
individual neuroimaging studies, which typically reflect 
differences in activation strength between two different 
brain states or participant groups. The results, thus, 
reflect the convergence (i.e., consistency) of brain activa-
tion differences reported across these studies (Eickhoff 
et al., 2012). ALE meta-analytic contrasts, on the other 
hand, compare the results of two classic meta-analyses, 
testing for those voxels where convergence (the ALE 
value) significantly differs between two meta-analysis. 
Meta-analytic contrast analysis, thus, adds an additional 
layer on top of classic ALE analyses and is an important 
tool for interpretation as it provides formal information if 
brain regions found in one meta-analysis but not in the 
other truly differ in their ALE scores.

It might be suggested that meta-analytic contrasts 
and classic meta-analyses of the same comparison pick 
up similar mechanisms. However, as can be seen from 
the description of the calculation above, meta-analytic 
contrasts differ conceptually. While meta-analytic con-
trasts investigate differences in convergence without 
considering activation strength, classic meta-analyses 
test for convergence across activation strength. This dis-
tinction is further highlighted by two previous clinical 
meta-analyses using both approaches to investigate 
changes in brain activation in autism (Costa et al., 2021) 
and borderline personality disorder (Degasperi et  al., 
2021) compared with healthy controls. Both studies 
found divergent results for the two approaches. Costa 
et al. (2021), for example, identified regions of consistent 
aberrant brain activation computing a classic meta-
analysis (across experiments of patients vs. controls). 
However, a meta-analytic contrast of the same but con-
ceptually different comparison (meta-analysis across 
patients vs. meta-analysis across controls) did not. The 
authors argue that differences in the magnitude of activa-
tion can be obscured when looking at differences in con-
vergence (i.e., meta-analytic contrasts). However, while 
highlighting the importance to distinguish between the 
two approaches, previous results can only be generalized 
to group comparisons. Importantly, clinical meta-
analyses often consolidate findings found for a specific 
patient group independent of a particular process and 
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are therefore quite heterogeneous in the tasks and pro-
cesses investigated (Müller et al., 2017), leading to over-
all less convergence for all analyses. Results reported by 
Costa et al. (2021) and Degasperi et al. (2021) may, there-
fore, be affected by this heterogeneity and may not be 
transferable to meta-analyses that investigate different 
task conditions.

Thus, the interpretation of meta-analytic contrast 
results and their ability to capture effects observed at the 
experimental level are still not fully clarified. The increas-
ing popularity in computing these contrasts and the 
resulting interest in understanding the findings necessi-
tates a systemic investigation.

The current study aimed to provide deeper insights 
into the interpretability and validity of meta-analytic con-
trasts by conducting a comprehensive empirical evalua-
tion. We compared the results of meta-analytic contrasts 
with the results of individual meta-analyses across exper-
imental comparisons. This approach is similar to Costa 
et al. (2021) and Degasperi et al. (2021), who computed 
group comparisons (patients > controls; meta-analysis 
patients > meta-analysis controls). However, in order to 
keep the complexity low and to avoid additional con-
founding effects at the level of group comparisons, we 
took a step back and focused on comparing prototypical 
task conditions in three different cognitive domains. 
Thus, in each domain, we compared the results of a 
meta-analysis across contrasts between two conditions 
(condition A > condition B) with the results of a meta-
analytic contrast that contrasted two meta-analyses of 
the same two conditions with each other (meta-analysis 
condition A > meta-analysis conditions B).

2.  METHODS

In this paper, the standard meta-analysis across 
experiment-level contrasts is abbreviated to CM 
(contrast-meta); the meta-analytic contrast between two 
meta-analyses is abbreviated to MC (meta-contrast). It is 
important to note that the input-data (coordinates we 

obtained from the individual neuroimaging studies) 
required for the computation of the two approaches is 
different. In the first case (CM), coordinates are needed 
for the contrast between condition A > condition B, 
whereas in the second case (MC), the main effect coordi-
nates are needed for condition A > baseline and coordi-
nates for condition B > baseline. The availability of the 
coordinates determines which method can be used.

To conduct a comprehensive empirical study, we col-
lected four sets of data from different cognitive domains. 
Working memory 2-back > 0-back: based on the n-back 
task, the 2-back (condition A) was contrasted with the 
0-back (condition B) condition. To compute the contrast-
meta, experiments reporting 2-back > 0-back (A>B) 
were collected. For the meta-contrast, experiments 
reporting 2-back > baseline (A) and 0-back > baseline 
(B) were separately collected, two individual meta-
analyses (meta-analysis across A and one across B) 
computed, and the results statistically compared in the 
meta-contrast. Working memory 2-back > 1-back: 
experiments reporting 2-back > 1-back (A>B) for the 
CM and 2-back > 0-back (A) and 1-back > 0-back (B) for 
the MC were collected. Cognitive interference process-
ing: experiments of the color-word Stroop task were 
collected. Incongruent > congruent (A>B) experiments 
were collected for the CM, whereas incongruent > con-
trol/baseline (A) and congruent > control/baseline (B) 
experiments were gathered for the MC. Emotional face 
processing: experiments across different tasks using 
emotional and neutral face stimuli were collected. 
Experiments of the emotional > neutral faces (A>B) 
comparison were used for the CM. Emotional faces > 
control/baseline (A) and neutral faces > control/baseline 
(B) for meta-contrast (see Table 1).

2.1.  Analysis approach

As described above, we used two different meta-analytic 
approaches for computing the same contrast (e.g., con-
dition A > condition B): First, an ALE meta-analysis was 

Table 1.  Datasets and experiments (contrasts at experimental level) included in contrast-meta (CM) and meta-contrast (MC).

Domain (dataset) Experiments included in CM
Experiments included  
in MC - condition A

Experiments included  
in MC - condition B

Working memory (WM: 
2-back > 0-back)

2-back > 0-back 2-back > baseline 0-back > baseline

Working memory load 
(WM: 2-back > 1-back)

2-back > 1-back 2-back > 0-back 1-back > 0-back

Cognitive interference 
processing (interference)

incongruent > congruent incongruent > control; 
incongruent > baseline

congruent > control;  
congruent > baseline

Emotional face  
processing (emo)

emotional > neutral faces emotional faces > control; 
emotional faces > baseline

neutral faces > control;  
neutral faces > baseline
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calculated across experiments that delineated the con-
trast of interest on the experimental level (CM). The CM, 
thus, includes experiments reporting results that com-
pare condition A with condition B (condition A > condi-
tion B). This type of meta-analysis, thus, revealed spatial 
convergence of differences in brain activations between 
conditions across experiments (Müller, Cieslik, et  al., 
2018) (compare Fig. 1).

Second, the contrast of interest was calculated by 
contrast analysis between the results of two meta-
analyses (MC). To do so, we first calculated two separate 
meta-analyses, one across experiments contrasting con-
dition A with a control or baseline condition and once 
across experiments contrasting condition B with a con-
trol or baseline condition. Importantly, a significant con-
vergence of a brain region in the meta-analysis across 
condition A and a lack of convergence of the same brain 
region in the meta-analysis across condition B does not 
necessarily indicate that condition A differs in conver-
gence from condition B. Thus, to formally test significant 
difference in convergence, the two meta-analyses were 
contrasted against each other using meta-analytic con-
trast analysis resulting in the same contrast of interest 
(condition A > condition B) as CM but calculated in a dif-
ferent way. In contrast to the CM, the MC results reflect 
differences in the across-study convergence of brain 
activation between conditions.

2.1.1.  Activation likelihood estimation

For each dataset, we conducted three meta-analyses: 
one for the meta-analysis across experimental contrasts 
(CM), and two for the meta-analytic contrasts (MC). All 
meta-analyses were computed based on the activation 

likelihood estimation algorithm (Eickhoff et  al., 2009, 
2012; Turkeltaub et  al., 2002, 2012). Here, we used an 
in-house Python implementation of the algorithm (https://
github​.com​/LenFrahm​/pyALE).

In ALE, the foci of all included experiments are 
treated as centers of Gaussian probability distributions 
which captures the spatial uncertainty of the coordi-
nates. The width of these distributions is modeled 
based on empirical data of between-template and 
between-participant variance. The between-participant 
variance is weighted by the number of participants of 
the respective study as a larger sample size is consid-
ered as spatially more reliable and therefore modeled 
with a denser Gaussian than experiments with a smaller 
sample size. For each experiment, a modeled activa-
tion map is generated by aggregating the probabilities 
of all reported foci for each voxel. To account for exper-
iments reporting multiple foci close to each other, each 
voxel only receives the largest possible probability 
value from all foci close to it (Turkeltaub et al., 2012). 
Then, the probabilities are combined by taking the 
voxel-wise union across all modeled activation maps of 
each individual experiment. The resulting map of voxel-
wise ALE scores, thus, reflects the convergence of 
results across experiments in each voxel of the brain 
(Eickhoff et al., 2009).

Next, the ALE scores are tested against a null distribu-
tion of random spatial associations to distinguish true 
from random convergence and results are thresholded at 
p < 0.001. The null distribution is calculated using an ana-
lytic procedure based on a nonlinear histogram algorithm 
(Eickhoff et al., 2012).

Finally, a permutation approach is used to correct for 
multiple comparisons (cFWE p < 0.05) by comparing the 

Fig. 1.  Schematic depiction of the analytic approach: Comparison of the results of a meta-analysis of experiments 
contrasting condition A with condition B (CM) with a meta-analytic contrast between a meta-analysis of experiments 
contrasting condition A with a baseline and another meta-analysis contrasting condition B with a baseline (MC).

https://github.com/LenFrahm/pyALE
https://github.com/LenFrahm/pyALE
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cluster sizes to a null distribution of cluster sizes. This null 
distribution is created by randomly distributing foci 
(except location all other properties of the foci are held 
constant) within a grey-matter mask, calculating an ALE 
analysis in the same manner as with the real data and 
recording the maximum cluster size found in this analy-
sis. This procedure is repeated 10,000 times, resulting in 
an empirical null distribution of cluster sizes. A cluster is 
considered significant if its size exceeds the sizes of 95% 
of those random permutations.

2.1.2.  ALE meta-analytic contrasts

To calculate MCs for each dataset, we contrasted the two 
ALE meta-analyses across the coordinates of the main 
effects (condition A > baseline and condition B > base-
line). The ALE contrast analysis is a statistical compari-
son between the results of two meta-analyses (Eickhoff 
et al., 2011). Here, we used an in-house implementation 
in Python, similar to the current implementation in Brain-
Map, GingerALE (Version 3.0.2). Meta-analytic contrast 
analyses were performed by first calculating two sepa-
rate meta-analyses and calculating the voxel-wise differ-
ence score. These difference scores are then compared 
to an empirical null distribution of ALE difference scores 
under the assumption of exchangeability. This was done 
by pooling the experiments of both conditions, shuffling 
them, and randomly splitting them into two groups of the 
original size of experiments. ALE difference scores 
between these random groups are then recorded for 
every voxel. This process is repeated 10,000 times, and 
the real differences in ALE scores are tested against this 
null distribution of difference scores. Here, a threshold of 
p > 0.95 was used (i.e., the observed probability in the 
difference between ALE values per voxel needed to be 
equal to or higher than 95% chance level), the results 
were inclusively masked by the respective main effect of 
the condition of interest, and an additional cluster extent 
threshold of k = 5 was applied.

2.2.  Data collection and datasets

We conducted a comprehensive literature search to 
construct, as mentioned above, four datasets for three 
distinct cognitive domains: working memory (WM), 
cognitive interference processing (interference), and 
emotional face processing (emo). These domains were 
selected based on their extensive investigation in the 
neuroimaging literature and the availability of sufficient 
experiments to calculate both a meta-analysis across 
experimental contrasts (CM) as well as a meta-analytic 
contrast between two meta-analyses (MC). We did  
not seek to obtain an ethics vote for this study as our 

analyses were based solely on previously published 
aggregated data and did not include individual partici-
pant data.

The datasets were constructed from previous meta-
analyses (Cieslik et al., 2015; Langner & Eickhoff, 2013; 
Müller, Höhner, et  al., 2018; Rottschy et  al., 2012) and 
extended by tracing references from additional meta-
analyses and conducting a comprehensive literature 
search using the “PubMed” (https://pubmed​.ncbi​.nlm​.nih​
.gov/) and “Web of Science” (http://webofknowledge​
.com/) search engines. Different variations of the key-
words “fMRI” and “PET” were combined with condition- 
and domain-specific search terms. We included studies, 
that reported results of at least one of the contrasts of 
interest (A>B, A or B), that is, reporting of all three con-
trasts of interest was not a requirement for inclusion since 
only few studies reported all contrasts. In accordance 
with the general guidelines (Müller, Cieslik, et al., 2018), 
only whole-brain comparisons (scan and analysis) from 
healthy adults (mean age 18 or older) that reported results 
in standard anatomical space (TAL or MNI) were included. 
We excluded intervention, treatment, or induction studies 
(e.g., medication, TMS). However, if a study reported 
results of a baseline measurement before an intervention, 
the corresponding contrast was included. In cases where 
a paper reported multiple experiments for the same con-
dition of interest in the same group of participants, the 
coordinates were pooled and treated as one experiment. 
Results reported in one paper but obtained from different 
participant groups were treated as separate experiments. 
Additionally, we reached out to authors (Agostini et al., 
2017; Aguirre et al., 2019; Campanella et al., 2013; Cullen 
et al., 2016; Daamen et al., 2015; Dan et al., 2019; Fukuda 
et  al., 2019; Ghavidel et  al., 2020; Habel et  al., 2007; 
Harding et al., 2016; Jung et al., 2018; Kaminski et al., 
2020; King et  al., 2015; Köhler et  al., 2016; Kowalczyk 
et al., 2021; Kozasa et al., 2018; Kronbichler et al., 2018; 
Krug et al., 2008; Lahr et al., 2018; Li et al., 2019; Luethi 
et al., 2016; Miró-Padilla et al., 2019; Papalini et al., 2019; 
Peven et  al., 2019; Schlagenhauf et  al., 2008; Schmidt 
et al., 2012; Schneider et al., 2007; Shashidhara et al., 
2020; Smits et  al., 2009; Szabó et  al., 2019; Takeuchi 
et al., 2018; Vacchi et al., 2017; van der Horn et al., 2016; 
Wagner et  al., 2015; Wallentin et  al., 2015; Wu et  al., 
2017; Ye & Zhou, 2009) via email to request pertinent 
additional results (see Fig. 2).

Literature search and coding was performed by one 
author, and the resulting datasets were checked for eligi-
bility and correctness by a second author. Literature 
search was performed up to 2021-12-09.

Details about the experimental designs, conditions, 
and specific tasks for each dataset can be found in the 
Supplementary Material.

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
http://webofknowledge.com/
http://webofknowledge.com/
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In the working memory (2-back > 0-back and 2-back 
> 1-back) and interference processing datasets, the 
experiments showed a relatively high degree of homoge-
neity. Specifically, within the working memory domain, 
all experiments used the n-back task, with variations 
between experiments only in the stimuli used (letters, 
numbers, pictures, etc.). Similarly, in the interference 
processing domain, experiments used the color-word 
Stroop task, with only some variations in the stimuli (dif-
ferent colors, number of colors). Additionally, the con-
trasting condition (> baseline) of the experiments used 
for the calculation of the MC remained relatively consis-
tent in the working memory dataset. However, in the 
interference processing dataset, there was some varia-
tion, with rest and control (e.g., words, symbols) as con-
trasting conditions.

In contrast, the emotional face processing dataset 
showed greater heterogeneity compared to the other 
two domains. This dataset encompassed experiments 
involving different tasks (such as gender-discrimination, 
passive viewing, and emotion-matching) along with a 
wide range of stimuli (different face datasets, different 
emotions, etc.). The contrasting conditions in this data-
set were more diverse, including rest and control condi-
tions with varying characteristics such as shapes, 
objects, scenes, and others. Further details about the 
four datasets can be found in the Supplementary Mate-
rial (Supplementary Tables S4–S6), providing a compre-
hensive description of the experimental designs and 
conditions.

Figure 2 provides a visual representation of the litera-
ture search process, including the number of authors 
contacted and the contrasts of interest.

2.2.1.  Comparison of meta-contrast  
and contrast-meta results

To quantify the extent to which the MC results were sim-
ilar to the CM results, different metrics were applied for 
voxel-, cluster-, and peak-related comparisons.

2.2.1.1.  Voxel-wise comparison.  First, we evaluated 
similarity based on a whole-brain voxel-wise compari-
son of the two result maps. First, we binarized both 
maps, that is, treated significant voxels as 1’s and non-
significant voxels as 0’s and calculated the Jaccard sim-
ilarity coefficient (Jaccard, 1901; Maitra, 2010) as well 
as the sensitivity and precision. Jaccard coefficient was 
calculated as the intersection of all significant voxels 
between CM and MC divided by the union of significant 
voxels (Eq. (1)).

Jaccard  coefficient = CM∩MC
CM∪MC �

(1)

Sensitivity was assessed by calculating the intersec-
tion of all significant voxels between CM and MC divided 
by all significant voxels of CM (Eq. (2)). This metric reflects 
how well the MC reveals voxels that are also significant in 
the CM analysis.

Sensitivity = CM∩MC
CM �

(2)

Precision, in contrast, shows the proportion of all sig-
nificant MC voxels that lie within the CM network (Eq. (3)).

Precision = CM∩MC
MC �

(3)

Fig. 2.  Flowchart depicting the creation of four datasets from three cognitive domains and the subsequent analyses.
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2.2.1.2.  Cluster-wise comparison.  As a second mea-
sure of similarity, a comparison of clusters was chosen, 
providing a similarity measure that is relatively indepen-
dent of the size of clusters and more based on the spatial 
location of results. Here, we assess how many clusters of 
one map overlap with clusters from the other map. Clus-
ters are counted as overlapping if at least one voxel of 
both maps is overlapping (Bossier et al., 2020). Cluster-
wise sensitivity was computed by first dividing the num-
ber of CM clusters overlapping with clusters from MC by 
the total number of CM clusters. Precision was assessed 
by first dividing the number of MC clusters overlapping 
with clusters from CM by the total number of MC clusters.

2.2.1.3.  Peak-wise comparison.  As the cluster-wise 
comparison does not take into account cases where the 
same anatomical region is revealed in both analyses 
without direct overlap, for example, in the case of rela-
tively small clusters, similarity between meta-analytic 
maps was additionally assessed by assessing the loca-
tion of local maxima. This was done by extracting peaks 
from CM and MC using the FSL cluster command on the 
uncorrected thresholded z-score maps. We extracted all 
local maxima with a minimum distance of 8 mm (default 
distance in SPM12—Statistical Parametric Mapping soft-
ware) and evaluated the proximity to the nearest peak in 
the opposite map. In particular, for each local maxima 
from CM we calculated the Euclidean distance to the 
next peak from MC. Likewise, for all local maxima from 
MC we determined the closest peak from CM. Median 
distances in each direction (CM to MC and MC to CM) 
were computed and reported in millimeters.

It should be noted that the comparison was conducted 
using the significant result maps rather than the unthresh-
olded maps. This approach allowed us to assess the sim-
ilarity of the results with those that would typically be 
reported in a meta-analytic study.

2.2.2.  Comparison of MC to a contrast derived  
from a large-sample single study

We also compared MC of 2-back > 0-back to the results 
of a contrast derived from a highly powered large single 
study dataset, calculating voxel-wise, cluster-wise, and 
peak-wise comparisons in the same way as for compari-
sons with CM. For this, we used task-based fMRI data 
from the working memory task of an unrelated sample of 
the Human Connectome Project (HCP) (Van Essen et al., 
2013). Details regarding the dataset, sample, and prepro-
cessing as well as the results can be found in the Supple-
mentary Material. The maps of the two “comparison 
maps,” that is, CM and HCP demonstrated a voxel-wise 
Jaccard index of 0.27.

3.  RESULTS

3.1.  Description of the datasets

To investigate the effects captured in meta-analytic con-
trasts (MCs) in comparison with meta-analyses across 
the same contrasts at the experimental level (CMs), we 
compared four MC analyses and corresponding CM 
analyses across three different cognitive domains. The 
final datasets included 134 experiments for working 
memory: 2-back > 0-back, 118 experiments for working 
memory: 2-back > 1-back, 124 experiments for interfer-
ence processing, and 146 experiments for emotional 
face processing. Most studies reported experiments for 
only one condition of interest (A, B or A>B), but there 
were also those that provided experiments for two or all 
three contrasts of interest. All three contrasts of interest 
(i.e., A, B, A>B) were available for 12 studies in WM: 
2-back > 0-back, for 6 studies in WM: 2-back > 1-back, 
for 15 studies in interference processing, and for only 3 
studies in emo dataset. Both sets of coordinates required 
to compute the MC (i.e., A, B) were available for 16 stud-
ies in WM: 2-back > 0-back, 17 studies in WM: 2-back > 
1-back, 20 studies in interference, and 17 studies in emo 
datasets.

3.2.  Comparison between CM and MC

Overall, voxel-wise comparisons revealed disparities in 
the number of significant voxels between CM and MC, 
with CM exhibiting a larger network for all datasets (see 
Figures 3–6). Thus, CM is, in general, more sensitive than 
MC. For the working memory (2-back > 0-back) and 
interference processing contrasts, the voxels identified 
by MC largely aligned with the CM network. However, 
this correspondence was not observed for the 2-back > 
1-back and emotional face processing contrasts. At the 
cluster level, several of the MC clusters overlapped with 
those of CM.

3.2.1.  Working memory

3.2.1.1.  2-back > 0-back.  As shown in Figure  3, the 
classic CM yielded a more extensive network in terms of 
regions and significant voxels, as compared to the MC 
results. Voxel-wise Jaccard coefficients and sensitivity 
are thus rather low (~0.1, see Supplementary Table S1). 
However, all regions showing significantly stronger con-
vergence in the 2-back > baseline meta-analysis, as 
compared to the 0-back > baseline meta-analysis (MC), 
were located entirely within the CM network, reflected by 
high precision (0.98) and perfect cluster and peak over-
laps (Fig. 3). Regions delineated in both types of contrast 
analyses included bilateral intraparietal sulcus (IPS), 
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dorsal premotor cortex (dPMC), (pre-) supplementary 
motor area (SMA), anterior insula, and left cerebellum; in 
contrast, 3 out of 4 cerebellar regions, left basal ganglia, 
bilateral dorsolateral prefrontal cortex (dlPFC), frontal 
pole, as well as inferior frontal junction (IFJ) were not 
identified in MC, which is reflected in low cluster-wise 
sensitivity (0.47) and relatively far median peak distance 
(14.4 mm).

3.2.1.2.  2-back > 1-back.  In a second dataset based 
on the WM domain, we focused on conditions with dif-
ferent working memory loads (i.e., 2-back > 1-back). At 
the voxel level, both networks seem to differ substan-
tially (compare Fig.  4 and Supplementary Table  S1). 
However, many clusters of MC and CM were located 
directly next to each other and therefore the comparison 
by cluster and peak locations revealed relatively good 
correspondence of MC and CM (compare Fig.  4). 
Regions for which significant differences were found in 
both contrast analyses included the bilateral IPS, dlPFC, 
(pre-)SMA, and 3 clusters in the cerebellum. Left dorsal 
premotor cortex and right anterior insula were only iden-
tified in CM, while bilateral frontal pole clusters and left 
insula were only found for MC.

3.2.2.  Interference processing

The comparison of the interference meta-analytic contrast 
(MC) with the results of the contrast-meta (CM) yielded a 
similar pattern as seen for the WM 2-back > 0-back com-
parison (see Fig. 5). However, for the interference contrast, 
higher voxel-wise similarity was found together with lower 
precision (Supplementary Table S1). The results of the peak 
comparison showed a moderate correspondence from MC 
to CM (with a median distance of 10 mm), while this was 
relatively lower for CM to MC (with a median distance of 
21.3 mm). Similarly, the cluster-wise comparison showed 
that almost all regions revealed by MC have overlapping 
clusters in CM, while many clusters revealed by CM had no 
correspondence in MC (compare Fig. 5). Regions found in 
both contrast approaches comprised bilateral anterior 
insula, (pre-)SMA, midcingulate cortex, left IPS, and left 
dlPFC. For CM bilateral thalamus, right cerebellum and left 
fusiform gyrus were additionally identified, while MC 
revealed a cluster in right IPS.

3.2.3.  Emotional face processing

For emotional face processing, CM and MC revealed net-
works with little to no similarity (see Fig.  6). The only 

Fig. 3.  Comparison of meta-analytic contrast (MC, green) and contrast-meta (CM, purple) for 2-back versus 0-back. (A) 
MC and CM projections on MNI152 volume and fsLR (FreeSurfer surface template) surface. (B) Venn diagram depicting 
the absolute voxel-wise overlap between the two maps (yellow). (C) Median distance between CM peaks and their nearest 
MC peaks, and vice versa. Cluster-wise overlap by count of CM and MC clusters overlapping with any cluster of the 
opposite map. Sensitivity shows the proportion of overlapping CM clusters with MC clusters, precision as overlapping MC 
clusters with CM.
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Fig. 4.  Comparison of meta-analytic contrast (MC, green) and contrast-meta (CM, purple) for the working memory 2-
back versus 1-back dataset. (A) MC and CM projections on MNI152 volume and fsLR surface. (B) Venn diagram depicting 
voxel-wise overlap between CM and MC (yellow). (C) Proximities of peaks and cluster-wise overlap between the maps. 
Refer to previous caption for detailed descriptions.

Fig. 5.  Comparison of meta-analytic contrast (MC, green) and contrast-meta (CM, purple) for the interference dataset. 
(A) MC and CM projections on MNI152 volume and fsLR surface. (B) Venn diagram depicting voxel-wise overlap between 
CM and MC (yellow). (C) Proximities of peaks and cluster-wise overlap between the maps. Refer to previous caption for 
detailed descriptions.
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regional correspondence was observed in the left lateral 
occipital cortex, fusiform gyrus, and left amygdala. In 
contrast to the other domains (WM: 2-back > 0-back and 
interference), we observed twice as many clusters and 
peaks for MC than for CM (see Fig. 6). In both analyses, 
bilateral lateral occipital gyrus, left amygdale, and left 
fusiform gyrus were found (in slightly different locations). 
For CM right fusiform gyrus and left lateral orbitofrontal 
cortex were additionally found, whereas MC identified 
additional clusters in bilateral dlPFC and IPS, left hippo-
campus, right cerebellum, bilateral occipital pole, as well 
as pre-SMA.

4.  DISCUSSION

Meta-analytic studies often test for differences between 
various mental faculties, groups, and other experimental 
factors that are not sufficiently enough contrasted in  
the neuroimaging literature (Fehlbaum et  al., 2022; 
Klugah-Brown et al., 2021; Swick et al., 2011) by com-
puting separate meta-analyses for each condition of 
interest. However, the results of individual meta-analyses 
do not provide any information about where in the brain 
convergence differs between these analyses. For 
instance, the presence of convergence in a specific brain 
region found in one meta-analysis and absence of the 
same region in another one does not necessarily imply 

that one of them shows less consistency across experi-
ments than the other. Meta-analytic contrast analyses 
are, thus, important tools to formally test for these differ-
ences and should be provided in any meta-analytic study 
that claims to interpret differences between individual 
analyses results. However, while the statistical relevance 
and usefulness of meta-analytic contrast is out of ques-
tion, it is not fully evaluated which exact conclusions can 
be drawn from the results. This empirical investigation 
aimed to assess the extent to which meta-analytic con-
trasts (MC), as implemented in the ALE meta-analysis 
framework, reflect the effects observed in standard meta-
analyses across experiment-level contrasts (CM). Results 
revealed that meta-analytic contrasts revealed, in gen-
eral, less differences between conditions than CM 
together with a high rate of precision for most datasets, 
except emotion processing, the dataset where tasks, 
control conditions, and stimuli varied most. Therefore, for 
most datasets, regions found in meta-analytic contrast 
analysis can quite confidently be interpreted in a similar 
way as results of classic CMs, that is, consistent acti
vation differences between conditions. However, an 
absence of differences in meta-analytic contrast results 
does not necessarily imply the absence of consistent 
activation differences. This is especially true for regions 
that overlap across the two meta-analyses that are com-
pared to each other, as well as to low-powered and/or 

Fig. 6.  Comparison of meta-analytic contrast (MC, green) and contrast-meta (CM, purple) for the emotional face 
processing dataset. (A) MC and CM projections on MNI152 volume and fsLR surface. (B) Venn diagram depicting voxel-
wise overlap between CM and MC (yellow). (C) Proximities of peaks and cluster-wise overlap between the maps. Refer to 
previous caption for detailed descriptions.
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datasets with a lot of experimental and methodological 
variation. Thus, meta-analytic contrasts, in addition to 
providing statistical evidence of differences in conver-
gence between the results of separate analyses, are well 
suited for complementary and exploratory meta-analytic 
investigations, especially in situations where there is 
insufficient literature reporting the exact contrast of  
interest. However, the results of MC should always be 
interpreted considering the specific characteristics of the 
datasets and potential systematic confounds be 
assessed that could affect the results.

4.1.  Functional relevance of identified regions

When looking at the specific regions revealed for the 
working memory and interference processing domains, 
CM and MC both reveal networks including, frontal and 
parietal regions as well as the anterior insula and (pre)
SMA. These regions are part of the multiple demand 
(Camilleri et al., 2018; Duncan, 2010), central executive 
(Menon, 2011), or cognitive control (Cole & Schneider, 
2007) networks and are thus scientifically meaningful to 
be involved in working memory and interference pro-
cessing. Interestingly, most regions that are additionally 
found in CM or MC, like the more anterior dlPFC, dPMC, 
and subcortical regions (basal ganglia and thalamus) are 
part of the so-called extended multiple demand network 
(Camilleri et al., 2018), regions involved in executive func-
tions but, in contrast to the core multiple demand regions, 
more dependent on specific cognitive demands. These 
regions might, therefore, show smaller and less robust 
effects and are potentially only found when contrasted 
against a specific high-level control condition or in exper-
iments with specific task characteristics.

For the emotion processing domain, in turn, there 
were only few regions that were found in both contrast 
approaches. While CM primarily identified classical 
regions of (facial) emotion processing, that is, bilateral 
amygdala, fusiform, and inferior occipital gyrus as well as 
the left lateral orbitofrontal cortex (Adolphs, 2002; Dolcos 
et al., 2011), the contrast at the meta-analytic level (MC) 
revealed many regions (like dlPFC, IPS, preSMA, hippo-
campus) that are more implicated in emotional control as 
well as increased task demand (Dolcos et  al., 2011; 
Duncan, 2010; Phillips et al., 2003). Thus, MC seems to 
pick up cognitive processes during emotion perception 
to a stronger degree than CM.

4.2.  Regions showing convergence of differences 
but no differences in convergence

The results of this study revealed relatively low voxel-
level similarity between MC and CM. This can be 

attributed to the generally lower number of significant 
voxels in MC. When looking at the results from a regional 
perspective, 45%–83% of the CM result clusters were 
also obtained in MC for WM and interference processing. 
However, still about half of the regions remained unde-
tected and much less in the dataset of emotional pro-
cessing. This is consistent with the results of Costa et al. 
(2021), reporting less differences between groups when 
using MC, relative to contrast meta-analyses.

4.2.1.  Power

The fact that less voxels/regions show convergence in 
CM but not in MC might be due to low power in the indi-
vidual meta-analyses, with more experiments needed for 
MC to detect the same effects as CM. In general, all the 
individual meta-analyses include enough experiments, 
that is, n > 21 experiments, for detecting strong effects 
and most of them are decently powered for detecting 
medium-size effects (Eickhoff et  al., 2016). However, 
more power might be needed for finding differences in 
convergence (via MCs). This is supported by the results 
of the 2-back > 1-back comparison, exhibiting the high-
est cluster-level sensitivity and lowest median peak dis-
tance (CM to MC peaks) with 73 experiments included in 
the meta-analysis of 2-back > 0-back. When reducing 
the number of experiments to 22 experiments in the 
deterministically matched analyses (see Supplementary 
Fig. S1), sensitivity decreased. However, this goes along 
with a lower level of precision and cannot be generalized 
to all the datasets, therefore indicating that a lack of 
power alone is unlikely to explain the detection of less 
voxels/clusters of MC.

A second factor that potentially influences statistical 
power is the heterogeneity between experiments (i.e., 
variations in tasks, stimuli, or control conditions) but also 
populations (variations in gender and age distribution, 
recruitment for clinical studies). For effect-size meta-
analysis, the power of an analysis is affected by the 
degree of heterogeneity across studies (Jiang et al., 2010; 
Kenny & Judd, 2019; McShane & Böckenholt, 2014). 
Neuroimaging meta-analyses might be similarly affected 
and with increasing heterogeneity, disproportionately 
more experiments would be needed to find significant 
differences in the MC.

4.2.2.  Differences in activation strength  
are lost in MC

It is important to note that in CM, the factor of interest is 
modeled as a within-subject factor on the single-
experiment level, while for MC the difference between 
conditions is based on the already sparser representation 
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of the two to-be-compared main effects as peak coordi-
nates. MC analysis thus adds an additional layer on top 
of classic ALE analyses, resulting in further information 
reduction. Consequently, the results of meta-analytic 
contrasts only indirectly include differences in brain acti-
vation and no information about effect sizes (Müller, 
Cieslik, et  al., 2018). This sparser representation might 
affect regions that are involved in both conditions. Indeed, 
our results suggest that MC is especially insensitive for 
clusters that are found in both individual meta-analyses 
that are compared to each other. For example, the MC of 
emotional face processing where the individual meta-
analyses overlap most (33% of the voxels of the individ-
ual meta-analysis emotion > baseline overlap with the 
voxels of neutral > baseline) reveals only few regions that 
are also found in CM. In turn, the MC with the highest 
amount of voxels that are also found in CM (interference 
processing) exhibited the lowest overlap of 13% (see 
Supplementary Figs.  S2–S5 for the amount of overlap 
between the individual meta-analyses of MCs for all 
datasets). Thus, activation differences for regions 
involved in both conditions cannot be revealed by MC. 
However, stronger convergence in similar regions can be 
observed if regions are larger in extent in one of the indi-
vidual analyses or are slightly shifted. Therefore, on the 
regional level, the problem of not detecting differences in 
convergence in overlapping regions can be mitigated by 
higher power of the individual meta-analyses, as the 
clusters become larger, the more experiments are 
included that show activation differences in a given area 
(Frahm et al., 2022). This is particularly evident in the WM 
2-back > 1-back comparison. The extent of the clusters 
for 2-back > 0-back found also for 1-back > 0-back is 
much larger, and MCs can, therefore, on the regional 
level, reveal differences that are also apparent in CMs. 
The extent and location of convergence, thus, directly 
influence if a difference in convergence of a particular 
contrast can be detected.

Less differences in convergence compared to conver-
gence in differences can additionally be attributed to 
effects driven by deactivations. For example, a region 
might be slightly activated in condition A and deactivated 
by condition B. Testing A against baseline as well as B 
against baseline in an individual fMRI experiment can 
thus lead to non-significant effects, but testing A against 
B would reveal significant effects. Thus, regions may be 
identified in CM but not in the meta-contrast. The con-
verse also holds true, regions observed in individual 
experiments of A > baseline might be missing in A > B, 
not due to activations in the control condition B (cancel-
ling out of effects) but due to slight activations in A and 
deactivations in the baseline condition, leading to signifi-
cant activation differences in A > baseline. It should be 

noted that these theoretical considerations also apply to 
differences in activation in contrasts of single fMRI stud-
ies. Previous studies have shown that the activation 
strength and significance of regions can be directly influ-
enced by the choice of initial conditions at the experi-
ment level (Marx et al., 2004; Newman et al., 2001; Stark 
& Squire, 2001). This, therefore, has a direct impact on 
CM and MC results since activation strength is not con-
sidered in the MC calculation and sparsely represented 
regions will lead to non-significant results on a meta-
analysis level. Thus, given that differences in activation 
are ignored in MC, both deactivations and regions acti-
vating on both conditions (overlapping regions) cannot 
be picked up by meta-analytic contrasts.

4.3.  Regions showing differences in convergence 
but no convergence of differences

Cluster-wise precision and median peak distance are 
quite good for the working memory and interference pro-
cessing datasets, but for emotional face processing there 
are a lot of regions found in MC but not CM. Thus, for the 
two datasets from the cognitive domain, there are only a 
few additional regions in MC, while for the emotional 
domain the results look different. This can be attributed 
to systematic experimental and methodological differ-
ences between experiments included in the two meta-
analyses of MC which are not related to the condition of 
interest as well as sub-optimal cognitive subtraction and 
thresholding of the original studies. For example, task 
and stimulus effects that were present in the “emotional 
> baseline” meta-analysis might have been absent or 
weaker in the “neutral > baseline” meta-analysis, result-
ing in task-specific effects not being subtracted in MC. 
Similarly, general task demands that are unrelated to the 
process of interest might only become apparent when 
contrasting against baseline conditions. Thus, divergent 
effects between MC and CM might be the results of sub-
optimal cognitive subtraction, especially for baseline 
contrasts. This becomes especially apparent for the 
emotion dataset, where primarily regions involved in 
increased task demands are identified in MC, rather than 
regions involved in emotional face processing.

The emotional face processing dataset shows a lot of 
variation of the face and control stimuli, as well as in the 
task performed. Experiments testing the contrast 
between emotional and neutral faces (which are included 
in CM) typically use only face stimuli and do not vary the 
task (e.g., Seara-Cardoso et  al., 2016; Williams et  al., 
2001). In contrast, in experiments testing emotional or 
neutral against control/baseline (which are included in 
MC), both face and non-face stimuli, and the task is var-
ied for face and control stimuli (i.e., emotion matching for 
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faces and shape matching for control stimuli, e.g., Binelli 
et al., 2016; Via et al., 2014). Together with very similar 
regions in face-processing-related regions, this could 
have led to a meta-contrast of more emotion-unspecific 
and more task-related effects (see Supplementary 
Fig. S5). For example, parietal regions, which are found in 
MC for emotion processing, play a major role in atten-
tional shifts (Langner et al., 2011; Serences et al., 2004; 
Shomstein & Yantis, 2004; Townsend et al., 2006). There-
fore, it is quite likely that stronger convergence for the 
meta-analytic contrast between emotional versus neutral 
faces reflects those attentional shifts between facial and 
control stimuli and not necessarily emotional processes. 
This is supported by the results of the matched analyses 
where parietal clusters are no longer found for MC when 
the control condition is matched.

In summary, systematic differences and suboptimal 
cognitive subtraction in experiments used for MC com-
putation may introduce confounds. These are not unique 
to task-focused meta-analyses but may be even more 
prevalent in MCs between groups (such as young vs. old, 
patients vs. control, disease A vs. disease B), since there 
may be confounding factors in the compared groups that 
are difficult to control, in addition to the systematic varia-
tions in task, control condition, and stimuli.

Therefore, our results highlight the susceptibility of  
MC for effects of systematic confounds between the 
contrasted datasets as well as imperfect cognitive sub-
traction. These should be considered in the planning, 
analyses, interpretation, and reporting of MC results by 
applying appropriate inclusion criteria, providing a 
detailed characterization of the experiments of the data-
sets, evaluation, and accounting of variables of no inter-
est that may systematically differ between the two 
meta-analyses as well as transparent reporting.

4.4.  Limitations and outlook

Some of the analyses presented here were only made 
possible thanks to additional non-peer-reviewed results 
sent to us by authors. While this approach introduces a 
potential new source of variance, it is not uncommon in 
the meta-analytic literature (Müller, Cieslik, et al., 2018). 
Furthermore, we were only able to gather all three con-
trasts of interest (experiments) for a limited number of 
studies, so we could not eliminate the effects generated 
by the heterogeneity of experiments. This may have been 
particularly evident in the emotional face processing 
comparison. Finally, we restricted ourselves to task fMRI 
contrasts between different cognitive conditions. Group 
contrasts, such as patients versus controls (Costa et al., 
2021; Degasperi et al., 2021), were not investigated here. 
Therefore, caution should be exercised when generaliz-

ing the results discussed here to such scenarios, which 
contain even more sources of heterogeneity.

It is important to acknowledge that the individual 
meta-analyses between which MC was calculated dif-
fered in terms of sample size, with condition A (vs. base-
line) always included more experiments than condition B 
(vs. baseline). This might have influenced the results, 
given a difference in power between the two analyses. 
One potential solution would be the use of balanced con-
trasts (Tamon et al., 2024). However, for this evaluation, 
we chose to calculate MC in the traditional way, as the 
results are better generalizable to most applications in 
the literature.

Importantly, although we compared MC to the results 
of CM and calculated metrics such as sensitivity, we do 
not claim that CM is the gold standard and free of any 
bias or problems. That is, systematic confounds that are 
common across experiments of CM can also lead to con-
vergence in CM that is not necessarily related to the pro-
cess of interest. Furthermore, as discussed above, 
coordinate-based meta-analyses use a sparse represen-
tation of results of individual studies, with coordinates 
being strongly dependent on the methodological and 
reporting characteristics of the individual studies (thresh-
olding, number of peaks reported, etc.). Thus, to allow 
generalizations and conclusions that go beyond the 
effects found for CM, MC should ideally be compared to 
results of the contrast of interest derived from different 
approaches. This could, for example, be results based on 
a large-sample single study (as already done for 2-back > 
0-back here; reported in the Supplementary Material) or 
of an image-based meta-analysis (Salimi-Khorshidi et al., 
2009). Unfortunately, the latter is often hampered by a 
lack of availability of unthresholded maps of individual 
studies.

Lastly, beyond the contrast-analyses used and imple-
mented for ALE meta-analyses, differences between 
conditions can also be tested by modelling categorical 
regressors in meta-regression analyses. While this is not 
currently implemented for ALE, Bayesian spatial regres-
sion models (Samartsidis et  al., 2019) and coordinate-
based meta-regression models (Yu et  al., 2024) would 
allow the modeling of covariates, reflecting a different 
approach to group comparisons. Although Samartsidis 
et al. (2019) reported similar results from meta-regression 
and the contrast analyses of ALE, a comparison of MC to 
the results of meta-regression would be a valuable exten-
sion of the current project.

5.  CONCLUSION

ALE meta-analytic contrasts are a widely used method 
for comparing results between individual meta-analyses 
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and are a necessary extension for meta-analytic studies 
that claim differences in regional convergence between 
two analyses across experiments of different conditions, 
states, or groups. Our results show that these contrasts 
in most cases capture similar results to standard meta-
analyses, but results can suffer from low power, system-
atic confounds, and a sparser representation of effects. 
Thus, meta-analytic contrasts are beyond demonstrating 
significant differences in convergence between meta-
analytic results, well suited for complementary and 
exploratory meta-analytic investigations. However, they 
should not be understood as a direct substitute for clas-
sic meta-analyses across experiment-level contrasts 
reported in the literature, and the regions found should be 
interpreted accordingly.
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All ALE meta-analyses were computed using pyALE, 
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coordinates include data from other research groups that 
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study contrast was based on the HCPpipelines (https://
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