
Consistent activation differences versus differences 1 

in consistent activation: Evaluating meta-analytic 2 

contrasts 3 

Vincent Küppers1,2,✉, Edna C. Cieslik3,1, Lennart Frahm4,1, Felix Hoffstaedter1,3, Simon 4 
B. Eickhoff3,1, Robert Langner3,1, and Veronika I. Müller1,3,✉ 5 

1 Institute of Neuroscience and Medicine, Brain and Behaviour (INM‑7), Research 6 

Center Jülich, Jülich, Germany 7 
2 Department of Nuclear Medicine, University Hospital and Medical Faculty, University 8 

of Cologne, Cologne, Germany 9 
3 Institute of Systems Neuroscience, Medical Faculty and University Hospital 10 

Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany 11 
4 Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, 12 

RWTH Aachen University, Aachen 13 

✉ Correspondence: Vincent Küppers <v.kueppers@fz-juelich.de>, Veronika I. Müller 14 

<v.mueller@fz-juelich.de> 15 

1 Abstract 16 

Meta-analytic contrasts are a promising aspect of coordinate-based meta-analyses in 17 
neuroimaging research as they facilitate the statistical comparison of two meta-analytic 18 

results. They have been used for a multitude of comparisons, such as task conditions, 19 

cognitive processes, and groups. However, it remains to be tested how the results of 20 

meta-analytic contrasts relate to those of classic meta-analyses and vice versa. Here 21 

we present a comprehensive empirical investigation of this issue using four datasets 22 

from three different cognitive domains: working memory, working memory load, 23 

cognitive interference processing, and emotional face processing. For all four datasets, 24 
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we compared the results of a standard meta-analysis across prototypical contrasts 25 

(condition A > condition B) reported in individual experiments with those of a contrast 26 

between two individual meta-analyses of the same conditions (meta-analysis condition 27 

A > meta-analysis condition B). In the meta-analytic contrasts similar brain regions as in 28 

the standard meta-analysis were found but with relatively distinct spatial activation 29 

patterns. Additionally, fewer regions were revealed in the meta-analytic contrasts, 30 

especially in areas where the conditions spatially overlapped. This can be ascribed to 31 

the loss of information on the strength of activations in meta-analytic contrasts, across 32 

which standard meta-analysis summarize. In one dataset, additional regions were found 33 

in the meta-analytic contrast, potentially due to task effects. Our results demonstrate 34 

that meta-analytic contrasts can yield similar results to standard meta-analyses but are 35 

sparser. This confirms the overall validity, but also limited ability to capture all regions 36 

found in standard meta-analyses. Notable differences observed in some cases indicate 37 

that such contrasts cannot be taken as an easy substitute for classic meta-analyses of 38 

experiment-level contrasts, warranting further research into the boundary conditions for 39 

agreement. 40 
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2 Introduction 44 

The neuroimaging literature of the last three decades has provided a wealth of findings 45 
on structural and functional brain–behaviour relationships as well as brain-related 46 

alterations in certain diseases. Meta-analytic approaches to neuroimaging results, such 47 

as the widely used Activation Likelihood Estimation (ALE) algorithm (Eickhoff et al., 48 

2012; Turkeltaub et al., 2002), are important tools to consolidate these findings and to 49 

overcome problems of individual studies (Müller, Cieslik, et al., 2018). Beyond testing 50 

for brain regions consistently found across studies, meta-analyses also provide the 51 

possibility to directly and statistically compare the results of two individual meta-52 
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analyses, using conjunctions and meta-analytic contrasts (Eickhoff et al., 2011; Laird et 53 

al., 2005). While conjunctions assess overlap in convergence, contrast analyses on the 54 

meta-analytic level reveal those voxels of the brain in which convergence in one meta-55 

analysis (e.g. across studies on face processing) is significantly stronger than in another 56 

(e.g., across studies on working memory). Meta-analytic contrasts therefore provide a 57 

possibility to statistically compare aggregated neuroimaging data and, since their 58 

introduction, have enjoyed great popularity for comparing different experimental 59 

conditions (Owen et al., 2005; Swick et al., 2011; Wesley & Bickel, 2014) , mental 60 

processes (Caspers et al., 2010; Gan et al., 2022; Langner et al., 2018) , or different 61 

groups (Costa et al., 2021; Fehlbaum et al., 2021; Hill et al., 2014; Stevens & Hamann, 62 

2012) . 63 

Meta-analytic contrasts are particularly useful to examine previously untested (or poorly 64 

studied) differences. Kogler et al. (2015) for example reported similarities and 65 

differences between psychological and physiological stress that has not been tested 66 

before in single fMRI studies and mainly found, contrary to previous assumptions, 67 

differential convergence for both types of stress. Rottschy et al. (2012) assessed 68 

differences in working memory based on stimulus material, task load and paradigms 69 

and reported regional specific convergence within the left dorsolateral prefrontal cortex. 70 

Importantly, meta-analytic contrasts can also help to break down larger cognitive 71 

concepts into their subcomponents. For example, Kogler et al. (2020) found supporting 72 

evidence for a multidimensional concept of empathy, Zhang et al. (2021) for the three 73 

subcomponents of executive functions, and Langner et al. (2018) for differences 74 

between top-down emotion and action regulation, which they confirmed through 75 

additional analyses. 76 

In addition, meta-analytic contrasts are also applied to test (previously not investigated) 77 

group differences, such as different ages (Fehlbaum et al., 2021; Yaple et al., 2019; 78 

Zhang et al., 2021) or clinical groups (Costa et al., 2021; Klugah-Brown et al., 2021). 79 

This is an important potential of contrasts on the meta-analytic level as studies 80 
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comparing different clinical groups to each other as well as to a control group are quite 81 

costly. 82 

These examples illustrate some of the many uses of meta-analytic comparisons. 83 

Especially, as the number of neuroimaging results continues to increase, many more 84 

applications of meta-analytic comparisons become possible. While all of them can 85 

theoretically also be carried out in individual fMRI studies, meta-analytic contrasts take 86 

advantage of the wealth of already conducted experiments by looking at them from a 87 

different angle and are a promising exploratory method for hypothesis generation. 88 

However, while meta-analytic contrasts offer new possibilities for investigating different 89 

concepts, it should be noted that the results of meta-analytic contrasts may not 90 

necessarily reflect differences in brain activation, despite often being interpreted as 91 

such. Classic ALE meta-analyses are conducted across coordinates derived from 92 

individual neuroimaging studies, which typically reflect differences in activation strength 93 

between two different brain states or participant groups. The results thus reflect the 94 

convergence (i.e., consistency) of brain activation differences reported across these 95 

studies (Eickhoff et al., 2012). ALE meta-analytic contrasts, on the other hand, compare 96 

the results of two classic meta-analysis, testing for those voxels where convergence 97 

(the ALE value) significantly differs between two meta-analysis. Meta-analytic contrast 98 

analysis thus adds an additional layer on top of classic ALE analyses and is an 99 

important tool for interpretation as it provides formal information if brain regions found in 100 

one meta-analysis but not in the other, truly differ in their ALE scores. 101 

It might be suggested that meta-analytic contrasts and classic meta-analyses of the 102 

same comparison pick up similar mechanisms. However, as can be seen from the 103 

description of the calculation above, meta-analytic contrasts differ conceptually. While 104 

meta-analytic contrasts investigate differences in convergence without considering 105 

activation strength, classic meta-analyses test for convergence across activation 106 

strength. This distinction is further highlighted by two previous clinical meta-analyses 107 

using both approaches to investigate changes in brain activation in autism (Costa et al., 108 

2021) and borderline personality disorder (Degasperi et al., 2021) compared with 109 
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healthy controls. Both studies found divergent results for the two approaches. Costa et 110 

al. (2021) for example identified regions of consistent aberrant brain activation 111 

computing a classic meta-analysis (across experiments of patients vs. controls). 112 

However, a meta-analytic contrast of the same but conceptually different comparison 113 

(meta-analysis across patients vs. meta-analysis across controls) did not. The authors 114 

argue that differences in the magnitude of activation can be obscured when looking at 115 

differences in convergence (i.e., meta-analytic contrasts). However, while highlighting 116 

the importance to distinguish between the two approaches, previous results can only be 117 

generalized to group comparisons. Importantly, clinical meta-analyses often consolidate 118 

findings found for a specific patient group independent of a particular process and are 119 

therefore quite heterogeneous in the tasks and processes investigated (Müller et al., 120 

2017), leading to overall less convergence for all analyses. Results reported by Costa et 121 

al. (2021) and Degasperi et al. (2021) may therefore be affected by this heterogeneity 122 

and may not be transferable to meta-analyses that investigate different task conditions. 123 

Thus, the interpretation of meta-analytic contrast results and their ability to capture 124 

effects observed at the experimental level are still not fully clarified. The increasing 125 

popularity in computing these contrasts and the resulting interest in understanding the 126 

findings necessitates a systemic investigation. 127 

The current study aimed to provide deeper insights into the interpretability and validity of 128 

meta-analytic contrasts by conducting a comprehensive empirical evaluation. We 129 

compared the results of meta-analytic contrasts with the results of individual meta-130 

analyses across experimental comparisons. This approach is similar to Costa et al. 131 

(2021) and Degasperi et al. (2021), who computed group comparisons (patients > 132 

controls; meta-analysis patients > meta-analysis controls). However, in order to keep 133 

the complexity low and to avoid additional confounding effects at the level of group 134 

comparisons, we took a step back and focused on comparing prototypical task 135 

conditions in three different cognitive domains. Thus, in each domain, we compared the 136 

results of a meta-analysis across contrasts between two conditions (condition A > 137 

condition B) with the results of a meta-analytic contrast that contrasted two meta-138 
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analyses of the same two conditions with each other (meta-analysis condition A > meta-139 

analysis conditions B). 140 

3 Methods 141 

In this paper, the standard meta-analysis across experiment-level contrasts is 142 

abbreviated to CM (contrast-meta); the meta-analytic contrast between two meta-143 

analyses is abbreviated to MC (meta-contrast). It is important to note that the input-data 144 

(coordinates we obtained from the individual neuroimaging studies) required for the 145 

computation of the two approaches is different. In the first case (CM), coordinates are 146 

needed for the contrast between condition A > condition B, whereas in the second case 147 

(MC), the main effect coordinates are needed for condition A > baseline and 148 

coordinates for condition B > baseline. The availability of the coordinates determines 149 

which method can be used. 150 

To conduct a comprehensive empirical study, we collected four sets of data from 151 

different cognitive domains. Working memory 2-back > 0-back: based on the n-back 152 

task, the 2-back (condition A) was contrasted with the 0-back (condition B) condition. To 153 

compute the contrast-meta, experiments reporting 2-back > 0-back (A>B) were 154 

collected. For the meta-contrast, experiments reporting 2-back > baseline (A) and 0-155 

back > baseline (B) were separately collected, two individual meta-analyses (meta-156 

analysis across A and one across B) computed and the results statistically compared in 157 

the meta-contrast. Working memory 2-back > 1-back: experiments reporting 2-back > 1-158 

back (A>B) for the CM and 2-back > 0-back (A) and 1-back > 0-back (B) for the MC 159 

were collected. Cognitive interference processing: experiments of the colour-word 160 

Stroop task were collected. Incongruent > congruent (A>B) experiments were collected 161 

for the CM, whereas incongruent > control/baseline (A) and congruent > 162 

control/baseline (B) experiments were gathered for the MC. Emotional face processing: 163 

experiments across different tasks using emotional and neutral face stimuli were 164 

collected. Experiments of the emotional > neutral faces (A>B) comparison were used for 165 
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the CM. Emotional faces > control/baseline (A) and neutral faces > control/baseline (B) 166 

for meta-contrast (see Table 1). 167 

Table 1: Datasets and experiments (contrasts at experimental level) included in 168 

contrast-meta (CM) and meta-contrast (MC) 169 

Domain (Dataset) Experiments 
included in CM 

Experiments included in 
MC - condition A 

Experiments included in 
MC - condition B 

Working memory (WM: 2-
back > 0-back) 2-back > 0-back 2-back > baseline 0-back > baseline 

Working memory load 
(WM: 2-back > 1-back) 2-back > 1-back 2-back > 0-back 1-back > 0-back 

Cognitive interference 
processing (interference) 

incongruent > 
congruent 

incongruent > control; 
incongruent > baseline 

congruent > control; 
congruent > baseline 

Emotional face 
processing (emo) 

emotional > 
neutral faces 

emotional faces > control; 
emotional faces > baseline 

neutral faces > control; 
neutral faces > baseline 

3.1 Analysis approach 170 

As described above, we used two different meta-analytic approaches for computing the 171 
same contrast (e.g., condition A > condition B): First, an ALE meta-analysis was 172 

calculated across experiments that delineated the contrast of interest on the 173 

experimental level (CM). The CM thus includes experiments reporting results that 174 

compare condition A with condition B (condition A > condition B). This type of meta-175 

analysis thus revealed spatial convergence of differences in brain activations between 176 

conditions across experiments (Müller, Cieslik, et al., 2018) (compare Figure 1). 177 

Second, the contrast of interest was calculated by contrast analysis between the results 178 

of two meta-analyses (MC). To do so, we first calculated two separate meta-analyses, 179 

one across experiments contrasting condition A with a control or baseline condition and 180 

once across experiments contrasting condition B with a control or baseline condition. 181 

Importantly, a significant convergence of a brain region in the meta-analysis across 182 

condition A and a lack of convergence of the same brain region in the meta-analysis 183 

across condition B does not necessarily indicate that condition A differs in convergence 184 
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from condition B. Thus, to formally test significant difference in convergence, the two 185 

meta-analyses were contrasted against each other using meta-analytic contrast 186 

analysis resulting in the same contrast of interest (condition A > condition B) as CM but 187 

calculated in a different way. In contrast to the CM, the MC results reflect differences in 188 

the across-study convergence of brain activation between conditions. 189 

 190 

Figure 1: Schematic depiction of the analytic approach: Comparison of the results of a 191 

meta-analysis of experiments contrasting condition A with condition B (CM) with a meta-192 

analytic contrast between a meta-analysis of experiments contrasting condition A with a 193 

baseline and another meta-analysis contrasting condition B with a baseline (MC). 194 

3.1.1 Activation likelihood estimation 195 

For each dataset, we conducted three meta-analyses: one for the meta-analysis across 196 

experimental contrasts (CM), and two for the meta-analytic contrasts (MC). All meta-197 

analyses were computed based on the activation likelihood estimation algorithm 198 

(Eickhoff et al., 2009, 2012; Turkeltaub et al., 2002, 2012). Here we used an in-house 199 

Python implementation of the algorithm (https://github.com/LenFrahm/pyALE). 200 

In ALE, the foci of all included experiments are treated as centers of Gaussian 201 

probability distributions which captures the spatial uncertainty of the coordinates. The 202 

width of these distributions is modeled based on empirical data of between-template 203 

and between-participant variance. The between-participant variance is weighted by the 204 
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number of participants of the respective study as a larger sample size is considered as 205 

spatially more reliable and therefore modeled with a denser Gaussian than experiments 206 

with a smaller sample size. For each experiment, a modeled activation map is 207 

generated by aggregating the probabilities of all reported foci for each voxel. To account 208 

for experiments reporting multiple foci close to each other, each voxel only receives the 209 

largest possible probability value from all foci close to it (Turkeltaub et al., 2012). Then, 210 

the probabilities are combined by taking the voxel-wise union across all modeled 211 

activation maps of each individual experiment. The resulting map of voxel-wise ALE 212 

scores thus reflects the convergence of results across experiments in each voxel of the 213 

brain (Eickhoff et al., 2009). 214 

Next, the ALE scores are tested against a null distribution of random spatial 215 

associations to distinguish true from random convergence and results are thresholded 216 

at p<0.001. The null distribution is calculated using an analytic procedure based on a 217 

nonlinear histogram algorithm (Eickhoff et al., 2012). 218 

Finally, a permutation approach is used to correct for multiple comparisons (cFWE p < 219 

0.05) by comparing the cluster-sizes to a null distribution of cluster sizes. This null 220 

distribution is created by randomly distributing foci (except location all other properties 221 

of the foci are held constant) within a grey-matter mask, calculating an ALE analysis in 222 

the same manner as with the real data and recording the maximum cluster size found in 223 

this analysis. This procedure is repeated 10,000 times resulting in an empirical null 224 

distribution of cluster sizes. A cluster is considered significant if its size exceeds the 225 

sizes of 95% of those random permutations. 226 

3.1.2 ALE meta-analytic contrasts 227 

To calculate MCs for each dataset, we contrasted the two ALE meta-analyses across 228 
the coordinates of the main effects (condition A > baseline and condition B > baseline). 229 

The ALE contrast analysis is a statistical comparison between the results of two meta-230 

analyses (Eickhoff et al., 2011). Here we used an in-house implementation in Python, 231 

similar to the current implementation in BrainMap, GingerALE (Version 3.0.2). Meta-232 
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analytic contrast analyses were performed by first calculating two separate meta-233 

analyses and calculating the voxel-wise difference score. These difference scores are 234 

then compared to an empirical null distribution of ALE difference scores under the 235 

assumption of exchangeability. This was done by pooling the experiments of both 236 

conditions, shuffling them and randomly splitting them into two groups of the original 237 

size of experiments. ALE difference scores between these random groups are then 238 

recorded for every voxel. This process is repeated 10000-times and the real differences 239 

in ALE scores are tested against this null distribution of difference scores. Here, a 240 

threshold of p > 0.95 was used (i.e., the observed probability in the difference between 241 

ALE values per voxel needed to be equal to or higher than 95% chance level), the 242 

results were inclusively masked by the respective main effect of the condition of 243 

interest, and an additional cluster extent threshold of k = 5 was applied. 244 

3.2 Data collection and datasets 245 

We conducted a comprehensive literature search to construct, as mentioned above, 246 

four datasets for three distinct cognitive domains: working memory (WM), cognitive 247 

interference processing (interference), and emotional face processing (emo). These 248 

domains were selected based on their extensive investigation in the neuroimaging 249 

literature and the availability of sufficient experiments to calculate both a meta-analysis 250 

across experimental contrasts (CM) as well as a meta-analytic contrast between two 251 

meta-analyses (MC). We did not seek to obtain an ethics vote for this study as our 252 

analyses were based solely on previously published aggregated data and did not 253 

include individual participant data. 254 

The datasets were constructed from previous meta-analyses (Cieslik et al., 2015; 255 

Langner & Eickhoff, 2013; Müller, Höhner, et al., 2018; Rottschy et al., 2012) and 256 

extended by tracing references from additional meta-analyses and conducting a 257 

comprehensive literature search using the “PubMed” (https://pubmed.ncbi.nlm.nih.gov/) 258 

and “Web of Science” (http://webofknowledge.com/) search engines. Different variations 259 

of the keywords “fMRI” and “PET” were combined with condition- and domain-specific 260 
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search terms. We included studies, that reported results of at least one of the contrasts 261 

of interest (A>B, A or B) i.e., reporting of all three contrasts of interest was not a 262 

requirement for inclusion since only few studies reported all contrasts. In accordance 263 

with the general guidelines (Müller, Cieslik, et al., 2018), only whole brain comparisons 264 

(scan and analysis) from healthy adults (mean age 18 or older) that reported results in 265 

standard anatomical space (TAL or MNI) were included. We excluded intervention, 266 

treatment, or induction studies (e.g., medication, TMS). However, if a study reported 267 

results of a baseline measurement before an intervention, the corresponding contrast 268 

was included. In cases where a paper reported multiple experiments for the same 269 

condition of interest in the same group of participants, the coordinates were pooled and 270 

treated as one experiment. Results reported in one paper but obtained from different 271 

participant groups were treated as separate experiments. Additionally, we reached out 272 

to authors (Agostini et al., 2017; Aguirre et al., 2019; Campanella et al., 2013; Cullen et 273 

al., 2016; Daamen et al., 2015; Dan et al., 2019; Fukuda et al., 2019; Ghavidel et al., 274 

2020; Habel et al., 2007; Harding et al., 2016; Jung et al., 2018; Kaminski et al., 2020; 275 

King et al., 2015; Köhler et al., 2016; Kowalczyk et al., 2021; Kozasa et al., 2018; 276 

Kronbichler et al., 2018; Krug et al., 2008; Lahr et al., 2018; Li et al., 2019; Luethi et al., 277 

2016; Miró-Padilla et al., 2019; Papalini et al., 2019; Peven et al., 2019; Schlagenhauf 278 

et al., 2008; Schmidt et al., 2012; Schneider et al., 2007; Shashidhara et al., 2020; 279 

Smits et al., 2009; Szabó et al., 2019; Takeuchi et al., 2018; Vacchi et al., 2017; van der 280 

Horn et al., 2016; Wagner et al., 2015; Wallentin et al., 2015; Wu et al., 2017; Ye & 281 

Zhou, 2009) via email to request pertinent additional results (see Figure 2). 282 

Literature search and coding was performed by one author and the resulting datasets 283 

were checked for eligibility and correctness by a second author. Literature search was 284 

performed up to 2021-12-09. 285 

Details about the experimental designs, conditions, and specific tasks for each dataset 286 

can be found in the supplementary material. 287 

In the working memory (2-back > 0-back and 2-back > 1-back) and interference 288 

processing datasets, the experiments showed a relatively high degree of homogeneity. 289 
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Specifically, within the working memory domain, all experiments used the n-back task, 290 

with variations between experiments only in the stimuli used (letters, numbers, pictures 291 

etc). Similarly, in the interference processing domain, experiments used the colour-word 292 

Stroop task, with only some variations in the stimuli (different colours, number of 293 

colours). Additionally, the contrasting condition (> baseline) of the experiments used for 294 

the calculation of the MC remained relatively consistent in the working memory dataset. 295 

However, in the interference processing dataset, there was some variation, with rest 296 

and control (e.g., words, symbols) as contrasting conditions. 297 

In contrast, the emotional face processing dataset showed greater heterogeneity 298 

compared to the other two domains. This dataset encompassed experiments involving 299 

different tasks (such as gender-discrimination, passive viewing, and emotion-matching) 300 

along with a wide range of stimuli (different face datasets, different emotions etc.). The 301 

contrasting conditions in this dataset were more diverse, including rest and control 302 

conditions with varying characteristics such as shapes, objects, scenes, and others. 303 

Further details about the four datasets can be found in the supplementary material 304 

(Table S4-6), providing a comprehensive description of the experimental designs and 305 

conditions. 306 

Figure 2 provides a visual representation of the literature search process, including the 307 

number of authors contacted and the contrasts of interest. 308 
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 309 

Figure 2: Flowchart depicting the creation of four datasets from three cognitive domains 310 

and the subsequent analyses. 311 

3.2.1 Comparison of meta-contrast and contrast-meta results 312 

To quantify the extent to which the MC results were similar to the CM results, different 313 

metrics were applied for voxel-, cluster-, and peak-related comparisons. 314 

Voxel-wise comparison 315 

First, we evaluated similarity based on a whole-brain voxel-wise comparison of the two 316 

result maps. First, we binarized both maps, i.e., treated significant voxels as 1’s and 317 

non-significant voxels as 0’s and calculated the Jaccard similarity coefficient (Jaccard, 318 

1901; Maitra, 2010) as well as the sensitivity and precision. Jaccard coefficient was 319 

calculated as the intersection of all significant voxels between CM and MC divided by 320 

the union of significant voxels (Equation (1)). 321 

𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝐶𝐶𝐶𝐶 ∩𝑀𝑀𝑀𝑀
𝐶𝐶𝐶𝐶 ∪𝑀𝑀𝑀𝑀  (1) 322 

Sensitivity was assessed by calculating the intersection of all significant voxels between 323 

CM and MC divided by all significant voxels of CM (Equation (2)). This metric reflects 324 

how well the MC reveals voxels that are also significant in the CM analysis. 325 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝐶𝐶𝐶𝐶 ∩𝑀𝑀𝑀𝑀
𝐶𝐶𝐶𝐶   (2) 326 

Precision in contrast shows the proportion of all significant MC voxels that lie within the 327 

CM network (Equation (3)). 328 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐶𝐶𝐶𝐶 ∩𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀   (3) 329 

Cluster-wise comparison 330 

As a second measure of similarity, a comparison of clusters was chosen, providing a 331 

similarity measure that is relatively independent of the size of clusters and more based 332 

on the spatial location of results. Here we assess how many clusters of one map 333 

overlap with clusters from the other map. Clusters are counted as overlapping if at least 334 

one voxel of both maps is overlapping (Bossier et al., 2020). Cluster-wise sensitivity 335 

was computed by first dividing the number of CM clusters overlapping with clusters from 336 

MC by the total number of CM clusters. Precision was assessed by first dividing the 337 

number of MC clusters overlapping with clusters from CM by the total number of MC 338 

clusters. 339 

Peak-wise comparison 340 

As the cluster-wise comparison does not take into account cases where the same 341 

anatomical region is revealed in both analyses without direct overlap, e.g. in the case of 342 

relatively small clusters, similarity between meta-analytic maps was additionally 343 

assessed by assessing the location of local maxima. This was done by extracting peaks 344 

from CM and MC using the FSL cluster command on the uncorrected thresholded z-345 

score maps. We extracted all local maxima with a minimum distance of 8 mm (default 346 

distance in SPM12 - Statistical Parametric Mapping software) and evaluated the 347 

proximity to the nearest peak in the opposite map. In particular, for each local maxima 348 

from CM we calculated the Euclidean distance to the next peak from MC. Likewise, for 349 

all local maxima from MC we determined the closest peak from CM. Median distances 350 

in each direction (CM to MC and MC to CM) were computed and reported in millimeters. 351 
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It should be noted that the comparison was conducted using the significant result maps 352 

rather than the unthresholded maps. This approach allowed us to assess the similarity 353 

of the results with those that would typically be reported in a meta-analytic study. 354 

3.2.2 Comparison of MC to a contrast derived from large-sample 355 

single study 356 

We also compared MC of 2-back > 0-back to the results of a contrast derived from a 357 
highly powered large single study dataset, calculating voxel-wise, cluster-wise, and 358 

peak-wise comparisons in the same way as for comparisons with CM. For this, we used 359 

task-based fMRI data from the working memory task of an unrelated sample of the 360 

Human Connectome Project (HCP) (Van Essen et al., 2013). Details regarding the 361 

dataset, sample and preprocessing as well as the results can be found in the 362 

supplementary material. The maps of the two “comparison maps,” i.e., CM and HCP 363 

demonstrated a voxel-wise Jaccard index of 0.27. 364 

4 Results 365 

4.1 Description of the datasets 366 

To investigate the effects captured in meta-analytic contrasts (MCs) in comparison with 367 
meta-analyses across the same contrasts at the experimental level (CMs), we 368 

compared four MC analyses and corresponding CM analyses across three different 369 

cognitive domains. The final datasets included 134 experiments for working memory: 2-370 

back > 0-back, 118 experiments for working memory: 2-back > 1-back, 124 experiments 371 

for interference processing, and 146 experiments for emotional face processing. Most 372 

studies reported experiments for only one condition of interest (A, B or A>B), but there 373 

were also that provided experiments for two or all three contrasts of interest. All three 374 

contrasts of interest (i.e., A, B, A>B) were available for 12 studies in WM: 2-back > 0-375 

back, for 6 studies in WM: 2-back > 1-back, for 15 studies in interference processing, 376 

and for only 3 studies in emo dataset. Both sets of coordinates required to compute the 377 
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MC (i.e., A, B) were available for 16 studies in WM: 2-back > 0-back, 17 studies in WM: 378 

2-back > 1-back, 20 studies in interference, and 17 studies in emo datasets. 379 

4.2 Comparison between CM and MC 380 

Overall, voxel-wise comparisons revealed disparities in the number of significant voxels 381 
between CM and MC, with CM exhibiting a larger network for all datasets (see Figure 3 382 

– 6). Thus, CM is in general more sensitive than MC. For the working memory (2-back > 383 

0-back) and interference processing contrasts, the voxels identified by MC largely 384 

aligned with the CM network. However, this correspondence was not observed for the 385 

2-back > 1-back and emotional face processing contrasts. At the cluster level, several of 386 

the MC clusters overlapped with those of CM. 387 

4.2.1 Working memory 388 

2-back > 0-back. As shown in Figure 3, the classic CM yielded a more extensive 389 

network in terms of regions and significant voxels, as compared to the MC results. 390 

Voxel-wise Jaccard coefficients and sensitivity are thus rather low (~0.1, see 391 

supplementary Table S1). However, all regions showing significantly stronger 392 

convergence in the 2-back > baseline meta-analysis, as compared to the 0-back > 393 

baseline meta-analysis (MC), were located entirely within the CM network, reflected by 394 

high precision (0.98) and perfect cluster and peak overlaps (Figure 3). Regions 395 

delineated in both types of contrast analyses included bilateral intraparietal sulcus (IPS), 396 

dorsal premotor cortex (dPMC), (pre-)supplementary motor area (SMA), anterior insula 397 

and left cerebellum; in contrast, 3 out of 4 cerebellar regions, left basal ganglia, bilateral 398 

dorsolateral prefrontal cortex (dlPFC), frontal pole as well as inferior frontal junction 399 

(IFJ) were not identified in MC, which is reflected in low cluster-wise sensitivity (0.47) 400 

and relatively far median peak distance (14.4 mm). 401 
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 402 

Figure 3: Comparison of meta-analytic contrast (MC, green) and contrast-meta (CM, 403 

purple) for 2-back versus 0-back. A, MC and CM projections on MNI152 volume and 404 

fsLR (FreeSurfer surface template) surface. B, Venn diagram depicting the absolute 405 

voxel-wise overlap between the two maps (yellow). C, median distance between CM 406 

peaks and their nearest MC peaks, and vice versa. Cluster-wise overlap by count of CM 407 

and MC clusters overlapping with any cluster of the opposite map. Sensitivity, shows 408 

proportion of overlapping CM clusters with MC clusters, precision as overlapping MC 409 

clusters with CM. 410 

2-back > 1-back. In a second dataset based on the WM domain, we focused on 411 

conditions with different working memory loads (i.e., 2-back > 1-back). At the voxel 412 

level, both networks seem to differ substantially (compare Figure 4 and supplementary 413 

Table S1). However, many clusters of MC and CM were located directly next to each 414 

other and therefore the comparison by cluster and peak locations revealed relatively 415 
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good correspondence of MC and CM (compare Figure 4). Regions for which significant 416 

differences were found in both contrast analyses included the bilateral IPS, dlPFC, (pre-417 

)SMA, and 3 clusters in the cerebellum. Left dorsal premotor cortex and right anterior 418 

insula was only identified in CM while bilateral frontal pole clusters and left insula was 419 

only found for MC. 420 

 421 

Figure 4: Comparison of meta-analytic contrast (MC, green) and contrast-meta (CM, 422 

purple) for the working memory 2-back versus 1-back dataset. A, MC and CM 423 

projections on MNI152 volume and fsLR surface. B, Venn diagram depicting voxel-wise 424 

overlap between CM and MC (yellow). C, proximities of peaks and cluster-wise overlap 425 

between the maps. Refer to previous caption for detailed descriptions. 426 
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4.2.2 Interference processing 427 

The comparison of the interference meta-analytic contrast (MC) with the results of the 428 

contrast-meta (CM) yielded a similar pattern as seen for the WM 2-back > 0-back 429 

comparison (see Figure 5). However, for the interference contrast, higher voxel-wise 430 

similarity was found together with lower precision (supplementary Table S1). The results 431 

of the peak comparison showed a moderate correspondence from MC to CM (with a 432 

median distance of 10 mm), while this was relatively lower for CM to MC (with a median 433 

distance of 21.3 mm). Similarly, the cluster-wise comparison showed that almost all 434 

regions revealed by MC have overlapping clusters in CM, while many clusters revealed 435 

by CM had no correspondence in MC (compare Figure 5). Regions found in both 436 

contrast approaches comprised bilateral anterior insula, (pre-)SMA, midcingulate cortex, 437 

left IPS, and left dlPFC. For CM bilateral thalamus, right cerebellum and left fusiform 438 

gyrus was additionally identified, while MC revealed a cluster in right IPS. 439 
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 440 

Figure 5: Comparison of meta-analytic contrast (MC, green) and contrast-meta (CM, 441 

purple) for the interference dataset. A, MC and CM projections on MNI152 volume and 442 

fsLR surface. B, Venn diagram depicting voxel-wise overlap between CM and MC 443 

(yellow). C, proximities of peaks and cluster-wise overlap between the maps. Refer to 444 

previous caption for detailed descriptions. 445 

4.2.3 Emotional face processing 446 

For emotional face processing, CM and MC revealed networks with little to no similarity 447 
(see Figure 6). The only regional correspondence was observed in the left lateral 448 

occipital cortex, fusiform gyrus, and left amygdala. In contrast to the other domains 449 

(WM: 2-back > 0-back and interference), we observed twice as many clusters and 450 

peaks for MC than for CM (see Figure 6). In both analyses bilateral lateral occipital 451 

gyrus, left amygdala and left fusiform gyrus were found (in slightly different locations). 452 
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For CM right fusiform gyrus and left lateral orbitofrontal cortex was additionally found, 453 

whereas MC identified additional clusters in bilateral dlPFC and IPS, left hippocampus, 454 

right cerebellum, bilateral occipital pole as well as pre-SMA. 455 

 456 

Figure 6: Comparison of meta-analytic contrast (MC, green) and contrast-meta (CM, 457 

purple) for the emotional face processing dataset. A, MC and CM projections on 458 

MNI152 volume and fsLR surface. B, Venn diagram depicting voxel-wise overlap 459 

between CM and MC (yellow). C, proximities of peaks and cluster-wise overlap between 460 

the maps. Refer to previous caption for detailed descriptions. 461 

5 Discussion 462 

Meta-analytic studies often test for differences between various mental faculties, 463 
groups, and other experimental factors that are not sufficiently enough contrasted in the 464 



 22 

neuroimaging literature (Fehlbaum et al., 2021; Klugah-Brown et al., 2021; Swick et al., 465 

2011) by computing separate meta-analyses for each condition of interest. However, 466 

the results of individual meta-analyses do not provide any information about where in 467 

the brain convergence differs between these analyses. For instance, the presence of 468 

convergence in a specific brain region found in one meta-analysis and absence of the 469 

same region in another one does not necessarily imply that one of them shows less 470 

consistency across experiments than the other. Meta-analytic contrast analyses are 471 

thus important tools to formally test for these differences and should be provided in any 472 

meta-analytic study that claims to interpret differences between individual analyses 473 

results. However, while the statistical relevance and usefulness of meta-analytic 474 

contrast is out of question, it is not fully evaluated which exact conclusions can be 475 

drawn from the results. This empirical investigation aimed to assess the extent to which 476 

meta-analytic contrasts (MC), as implemented in the ALE meta-analysis framework, 477 

reflect the effects observed in standard meta-analyses across experiment-level 478 

contrasts (CM). Results revealed that meta-analytic contrasts revealed in general less 479 

differences between conditions than CM together with a high rate of precision for most 480 

datasets, except emotion processing, the dataset where tasks, control conditions and 481 

stimuli varied most. Therefore, for most datasets, regions found in meta-analytic 482 

contrast analysis can quite confidently be interpreted in a similar way as results of 483 

classic CMs, i.e., consistent activation differences between conditions. However, an 484 

absence of differences in meta-analytic contrast results does not necessarily imply the 485 

absence of consistent activation differences. This is especially true for regions that 486 

overlap across the two meta-analyses that are compared to each other, as well as to 487 

low-powered and/or datasets with a lot of experimental and methodological variation. 488 

Thus, meta-analytic contrasts, in addition to providing statistical evidence of differences 489 

in convergence between the results of separate analyses, are well suited for 490 

complementary and exploratory meta-analytic investigations, especially in situations 491 

where there is insufficient literature reporting the exact contrast of interest. However, the 492 

results of MC should always be interpreted considering the specific characteristics of 493 
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the datasets and potential systematic confounds be assessed that could affect the 494 

results. 495 

5.1 Functional relevance of identified regions 496 

When looking at the specific regions revealed for the working memory and interference 497 
processing domains, CM and MC both reveal networks including, frontal and parietal 498 

regions as well as the anterior insula and (pre)SMA. These regions are part of the 499 

multiple demand (Camilleri et al., 2018; Duncan, 2010), central executive (Menon, 500 

2011) or cognitive control (Cole & Schneider, 2007) networks and are thus scientifically 501 

meaningful to be involved in working memory and interference processing. Interestingly, 502 

most regions that are additionally found in CM or MC, like the more anterior dlPFC, 503 

dPMC and subcortical regions (basal ganglia and thalamus) are part of the so called 504 

extended multiple demand network (Camilleri et al., 2018), regions involved in executive 505 

functions but, in contrast to the core multiple demand regions, more dependent on 506 

specific cognitive demands. These regions might therefore show smaller and less 507 

robust effects and are potentially only found when contrasted against a specific high-508 

level control condition or in experiments with specific task characteristics. 509 

For the emotion processing domain, in turn, there were only few regions that were found 510 

in both contrast approaches. While CM primarily identified classical regions of (facial) 511 

emotion processing, i.e. bilateral amygdala, fusiform and inferior occipital gyrus as well 512 

as the left lateral orbitofrontal cortex (Adolphs, 2002; Dolcos et al., 2011), the contrast at 513 

the meta-analytic level (MC) revealed many regions (like dlPFC, IPS, preSMA, 514 

hippocampus) that are more implicated in emotional control as well as increased task 515 

demand (Dolcos et al., 2011; Duncan, 2010; Phillips et al., 2003). Thus, MC seems to 516 

pick up cognitive processes during emotion perception to a stronger degree than CM. 517 
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5.2 Regions showing convergence of differences but no 518 

differences in convergence 519 

The results of this study revealed relatively low voxel-level similarity between MC and 520 

CM. This can be attributed to the generally lower number of significant voxels in MC. 521 

When looking at the results from a regional perspective, 45-83 % of the CM result 522 

clusters were also obtained in MC for WM and interference processing. However, still 523 

about half of the regions remained undetected and much less in the dataset of 524 

emotional processing. This is consistent with the results of Costa et al. (2021), reporting 525 

less differences between groups when using MC, relative to contrast meta-analyses. 526 

Power. The fact that less voxels/regions show convergence in CM but not in MC might 527 

be due to low power in the individual meta-analyses, with more experiments needed for 528 

MC to detect the same effects as CM. In general, all the individual meta-analyses 529 

include enough experiments, i.e., n > 21 experiments, for detecting strong effects and 530 

most of them are decently powered for detecting medium-size effects (Eickhoff et al., 531 

2016). However, more power might be needed for finding differences in convergence 532 

(via MCs). This is supported by the results of the 2-back > 1-back comparison, 533 

exhibiting the highest cluster-level sensitivity and lowest median peak distance (CM to 534 

MC peaks) with 73 experiments included in the meta-analysis of 2-back > 0-back. When 535 

reducing the number of experiments to 22 experiments in the deterministically matched 536 

analyses (see supplementary Figure S1), sensitivity decreased. However, this goes 537 

along with a lower level of precision and cannot be generalized to all the datasets, 538 

therefore indicating that a lack of power alone is unlikely to explain the detection of less 539 

voxels/clusters of MC. 540 

A second factor that potentially influences statistical power is the heterogeneity between 541 

experiments (i.e., variations in tasks, stimuli, or control conditions) but also populations 542 

(variations in gender and age distribution, recruitment for clinical studies). For effect-543 

size meta-analysis, the power of an analysis is affected by the degree of heterogeneity 544 

across studies (Jiang et al., 2010; Kenny & Judd, 2019; McShane & Böckenholt, 2014). 545 
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Neuroimaging meta-analyses might be similarly affected and with increasing 546 

heterogeneity, disproportionately more experiments would be needed to find significant 547 

differences in the MC. 548 

Differences in activation strength are lost in MC. It is important to note that in CM, 549 

the factor of interest is modelled as a within-subject factor on the single-experiment 550 

level, while for MC the difference between conditions is based on the already sparser 551 

representation of the two to-be-compared main effects as peak coordinates. MC 552 

analysis thus adds an additional layer on top of classic ALE analyses, resulting in 553 

further information reduction. Consequently, the results of meta-analytic contrasts only 554 

indirectly include differences in brain activation and no information about effect sizes 555 

(Müller, Cieslik, et al., 2018). This sparser representation might affect regions that are 556 

involved in both conditions. Indeed, our results suggest that MC is especially insensitive 557 

for clusters that are found in both individual meta-analyses that are compared to each 558 

other. For example, the MC of emotional face processing where the individual meta-559 

analyses overlap most (33 % of the voxels of the individual meta-analysis emotion > 560 

baseline overlap with the voxels of neutral > baseline) reveals only few regions that are 561 

also found in CM. In turn, the MC with the highest amount of voxels that are also found 562 

in CM (interference processing) exhibited the lowest overlap of 13 % (see 563 

supplementary Figure S2-5 for the amount of overlap between the individual meta-564 

analyses of MCs for all datasets). Thus, activation differences for regions involved in 565 

both conditions cannot be revealed by MC. However, stronger convergence in similar 566 

regions can be observed if regions are larger in extent in one of the individual analyses 567 

or are slightly shifted. Therefore, on the regional level, the problem of not detecting 568 

differences in convergence in overlapping regions can be mitigated by higher power of 569 

the individual meta-analyses, as the clusters become larger, the more experiments are 570 

included that show activation differences in a given area (Frahm et al., 2022). This is 571 

particularly evident in the WM 2-back > 1-back comparison. The extent of the clusters 572 

for 2-back > 0-back found also for 1-back > 0-back is much larger, and MCs can 573 

therefore, on the regional level, reveal differences that are also apparent in CMs. The 574 
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extent and location of convergence thus directly influence if a difference in convergence 575 

of a particular contrast can be detected. 576 

Less differences in convergence compared to convergence in differences can 577 

additionally be attributed to effects driven by deactivations. For example, a region might 578 

be slightly activated in condition A and deactivated by condition B. Testing A against 579 

baseline as well as B against baseline in an individual fMRI experiment can thus lead to 580 

non-significant effects, but testing A against B would reveal significant effects. Thus, 581 

regions may be identified in CM but not in the meta-contrast. The converse also holds 582 

true, regions observed in individual experiments of A > baseline might be missing in A > 583 

B, not due to activations in the control condition B (cancelling out of effects) but due to 584 

slight activations in A and deactivations in the baseline condition, leading to significant 585 

activation differences in A > baseline. It should be noted that these theoretical 586 

considerations also apply to differences in activation in contrasts of single fMRI studies. 587 

Previous studies have shown that the activation strength and significance of regions can 588 

be directly influenced by the choice of initial conditions at the experiment level (Marx et 589 

al., 2004; Newman et al., 2001; Stark & Squire, 2001). This therefore has a direct 590 

impact on CM and MC results since activation strength is not considered in the MC 591 

calculation and sparsely represented regions will lead to non-significant results on a 592 

meta-analysis level. Thus, given that differences in activation is ignored in MC, both 593 

deactivations and regions activating on both conditions (overlapping regions) can’t be 594 

picked up by meta-analytic contrasts. 595 

5.3 Regions showing differences in convergence but no 596 

convergence of differences 597 

Cluster-wise precision and median peak distance are quite good for the working 598 

memory and interference processing datasets, but for emotional face processing there 599 

are a lot of regions found in MC but not CM. Thus, for the two datasets from the 600 

cognitive domain, there are only a few additional regions in MC, while for the emotional 601 

domain the results look different. This can be attributed to systematic experimental and 602 
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methodological differences between experiments included in the two meta-analyses of 603 

MC which are not related to the condition of interest as well as sub optimal cognitive 604 

subtraction and thresholding of the original studies. For example, task and stimulus 605 

effects that were present in the “emotional > baseline” meta-analysis might have been 606 

absent or weaker in the “neutral > baseline” meta-analysis, resulting in task-specific 607 

effects not being subtracted in MC. Similarly, general task demands that are unrelated 608 

to the process of interest might only become apparent when contrasting against 609 

baseline conditions. Thus, divergent effects between MC and CM might be the results of 610 

suboptimal cognitive subtraction, especially for baseline contrasts. This becomes 611 

especially apparent for the emotion dataset, where primarily regions involved in 612 

increased task demands are identified in MC, rather than regions involved in emotional 613 

face processing. 614 

The emotional face processing dataset shows a lot of variation of the face and control 615 

stimuli, as well as in the task performed. Experiments testing the contrast between 616 

emotional and neutral faces (which are included in CM) typically use only face stimuli 617 

and do not vary the task (e.g., (Seara-Cardoso et al., 2016; Williams et al., 2001)). In 618 

contrast, in experiments testing emotional or neutral against control/baseline (which are 619 

included in MC), both face and non-face stimuli, and the task is varied for face and 620 

control stimuli (i.e., emotion matching for faces and shape matching for control stimuli, 621 

e.g., (Binelli et al., 2016; Via et al., 2014)). Together with very similar regions in face-622 

processing-related regions, this could have led to a meta-contrast of more emotion-623 

unspecific and more task-related effects (see supplementary Figure S5). For example, 624 

parietal regions, which are found in MC for emotion processing, play a major role in 625 

attentional shifts (Langner et al., 2011; Serences et al., 2004; Shomstein & Yantis, 626 

2004; Townsend et al., 2006). Therefore, it is quite likely that stronger convergence for 627 

the meta-analytic contrast between emotional versus neutral faces reflects those 628 

attentional shifts between facial and control stimuli and not necessarily emotional 629 

processes. This is supported by the results of the matched analyses where parietal 630 

clusters are no longer found for MC when the control condition is matched. 631 
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In summary, systematic differences and suboptimal cognitive subtraction in experiments 632 

used for MC computation may introduce confounds. These are not unique to task-633 

focused meta-analyses but may be even more prevalent in MCs between groups (such 634 

as young versus old, patients versus control, disease A versus disease B), since there 635 

may be confounding factors in the compared groups that are difficult to control, in 636 

addition to the systematic variations in task, control condition and stimuli. 637 

Therefore, our results highlight the susceptibility of MC for effects of systematic 638 

confounds between the contrasted datasets as well as imperfect cognitive subtraction. 639 

These should be considered in the planning, analyses, interpretation and reporting of 640 

MC results by applying appropriate inclusion criteria, providing a detailed 641 

characterization of the experiments of the datasets, evaluation, and accounting of 642 

variables of no interest that may systematically differ between the two meta-analyses as 643 

well as transparent reporting. 644 

5.4 Limitations and outlook 645 

Some of the analyses presented here were only made possible thanks to additional 646 
non-peer-reviewed results sent to us by authors. While this approach introduces a 647 

potential new source of variance, it is not uncommon in the meta-analytic literature 648 

(Müller, Cieslik, et al., 2018). Furthermore, we were only able to gather all three 649 

contrasts of interest (experiments) for a limited number of studies, so we could not 650 

eliminate the effects generated by the heterogeneity of experiments. This may have 651 

been particularly evident in the emotional face processing comparison. Finally, we 652 

restricted ourselves to task fMRI contrasts between different cognitive conditions. Group 653 

contrasts, such as patients vs. controls (Costa et al., 2021; Degasperi et al., 2021), 654 

were not investigated here. Therefore, caution should be exercised when generalizing 655 

the results discussed here to such scenarios, which contain even more sources of 656 

heterogeneity. 657 

It is important to acknowledge that the individual meta-analyses between which MC was 658 

calculated differed in terms of sample size, with condition A (versus baseline) always 659 
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included more experiments than condition B (versus baseline). This might have 660 

influenced the results, given a difference in power between the two analyses. One 661 

potential solution would be the use of balanced contrasts (Tamon et al., 2024). 662 

However, for this evaluation, we chose to calculate MC in the traditional way, as the 663 

results are better generalizable to most applications in the literature. 664 

Importantly, although we compared MC to the results of CM and calculated metrics 665 

such as sensitivity, we do not claim that CM is the gold standard and free of any bias or 666 

problems. That is, systematic confounds that are common across experiments of CM 667 

can also lead to convergence in CM that is not necessarily related to the process of 668 

interest. Furthermore, as discussed above, coordinate-based meta-analyses use a 669 

sparse representation of results of individual studies, with coordinates being strongly 670 

dependent on the methodological and reporting characteristics of the individual studies 671 

(thresholding, number of peaks reported, etc.). Thus, to allow generalizations and 672 

conclusions that go beyond the effects found for CM, MC should ideally be compared to 673 

results of the contrast of interest derived from different approaches. This could for 674 

example be results based on a large-sample single study (as already done for 2-back > 675 

0-back here; reported in the supplementary material) or of an image-based meta-676 

analysis (Salimi-Khorshidi et al., 2009). Unfortunately, the latter is often hampered by a 677 

lack of availability of unthresholded maps of individual studies. 678 

Lastly, beyond the contrast-analyses used and implemented for ALE meta-analyses, 679 

differences between conditions can also be tested by modelling categorical regressors 680 

in meta-regression analyses. While this is not currently implemented for ALE, Bayesian 681 

spatial regression models (Samartsidis et al., 2019) and coordinate-based meta-682 

regression models (Yu et al., 2024) would allow the modelling of covariates, reflecting a 683 

different approach to group comparisons. Although Samartsidis et al. (2019) reported 684 

similar results from meta-regression and the contrast analyses of ALE, a comparison of 685 

MC to the results of meta-regression would be a valuable extension of the current 686 

project. 687 
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5.5 Conclusion 688 

ALE meta-analytic contrasts are a widely used method for comparing results between 689 

individual meta-analyses and are a necessary extension for meta-analytic studies that 690 

claim differences in regional convergence between two analyses across experiments of 691 

different conditions, states, or groups. Our results show that these contrasts in most 692 

cases capture similar results to standard meta-analyses, but results can suffer from low 693 

power, systematic confounds and a sparser representation of effects. Thus, meta-694 

analytic contrasts are beyond demonstrating significant differences in convergence 695 

between meta-analytic results, well suited for complementary and exploratory meta-696 

analytic investigations. However, they should not be understood as a direct substitute 697 

for classic meta-analyses across experiment-level contrasts reported in the literature, 698 

and the regions found should be interpreted accordingly. 699 

6 Data and Code Availability 700 

All ALE meta-analyses were computed using pyALE, accessible at 701 

https://github.com/LenFrahm/pyALE. Code for comparing the meta-analytic results and 702 

plotting figures can be found at https://github.com/vinkue/ale-meta-contrasts. The data 703 

are available upon request, as the coordinates include data from other research groups 704 

that have not been consented for redistribution. 705 

The code used to compute the large sample single study contrast was based on the 706 

HCPpipelines (https://github.com/Washington-University/HCPpipelines) and the Python 707 

exemplary analysis by Esteban et al. (2020) (https://github.com/poldracklab/ds003-post-708 

fMRIPrep-analysis). Data from the Human Connectome Project Young Adults are 709 

available at https://db.humanconnectome.org/. 710 
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