001032033 001__ 1032033
001032033 005__ 20250129092511.0
001032033 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05945
001032033 037__ $$aFZJ-2024-05945
001032033 041__ $$aEnglish
001032033 1001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b0
001032033 1112_ $$aSilicon Quantum Electronics Workshop 2024$$cDavos$$d2024-09-04 - 2024-09-06$$gSiQEW 2024$$wSwitzerland
001032033 245__ $$aToward the approach of passive photonic link in quantum computers
001032033 260__ $$c2024
001032033 3367_ $$033$$2EndNote$$aConference Paper
001032033 3367_ $$2BibTeX$$aINPROCEEDINGS
001032033 3367_ $$2DRIVER$$aconferenceObject
001032033 3367_ $$2ORCID$$aCONFERENCE_POSTER
001032033 3367_ $$2DataCite$$aOutput Types/Conference Poster
001032033 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1730188177_31474$$xAfter Call
001032033 500__ $$aThis work was funded by the German Federal Ministry of Education and Research (BMBF), funding program “Quantum technologies - from basic research to market”, project QSolid (Grant No. 13N16149).
001032033 520__ $$aIn Quantum computing, ensuring the stability of qubits is crucial due to their extreme temperature sensitivity. To achieve this, qubits are kept at millikelvin temperatures to minimize thermal disruptions, while high frequency microwave signals with broad data bandwidth are necessary to drive them effectively. Currently, the prevalent approach involves using robust coaxial cables to transmit signals between room temperature electronics and the cryogenic environment where qubits reside. However, as quantum computers scale up with more qubits, coaxial cables face limitations due to cabling bottlenecks and thermal issues, prompting exploration of photonic links as a promising alternative. RF photonics has shown advanced capabilities at room temperature, offering high signal quality, low noise, and significant bandwidth compared to coaxial cables. Therefore, investigating the performance of RF photonics in cryogenic conditions becomes imperative. This study presents findings on the performance of a photonic link utilizing laser photodiodes, demonstrating the behavior of Silicon and InGaAs photodiodes when subjected to high frequency signals in a cryogenic environment. Importantly, this photonic link has the capability to directly drive both qubits and electronics in the 4K stage passively without any biasing.
001032033 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001032033 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid (BMBF-13N16149)$$cBMBF-13N16149$$x1
001032033 7001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b1$$ufzj
001032033 7001_ $$0P:(DE-Juel1)133936$$aSchlösser, Mario$$b2$$ufzj
001032033 7001_ $$0P:(DE-Juel1)184393$$aMutum, Santosh$$b3$$eCorresponding author$$ufzj
001032033 8564_ $$uhttps://juser.fz-juelich.de/record/1032033/files/Poster.pdf$$yOpenAccess
001032033 8564_ $$uhttps://juser.fz-juelich.de/record/1032033/files/Poster.gif?subformat=icon$$xicon$$yOpenAccess
001032033 8564_ $$uhttps://juser.fz-juelich.de/record/1032033/files/Poster.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001032033 8564_ $$uhttps://juser.fz-juelich.de/record/1032033/files/Poster.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001032033 8564_ $$uhttps://juser.fz-juelich.de/record/1032033/files/Poster.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001032033 909CO $$ooai:juser.fz-juelich.de:1032033$$pdriver$$pVDB$$popen_access$$popenaire
001032033 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b0$$kFZJ
001032033 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b1$$kFZJ
001032033 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133936$$aForschungszentrum Jülich$$b2$$kFZJ
001032033 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184393$$aForschungszentrum Jülich$$b3$$kFZJ
001032033 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001032033 9141_ $$y2024
001032033 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001032033 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001032033 9801_ $$aFullTexts
001032033 980__ $$aposter
001032033 980__ $$aVDB
001032033 980__ $$aUNRESTRICTED
001032033 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001032033 981__ $$aI:(DE-Juel1)PGI-4-20110106