

Quantum Computer in the Solid State Toward the approach of passive photonic links in quantum computers

Santosh Mutum^{1,2}, Patrick Vliex¹, Mario Schlösser¹, Stefan van Waasen^{1,2}

Central Institute of Engineering, Electronics and Analytics, Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany Faculty of Engineering, Communication Systems, University Duisburg-Essen, 47057 Duisburg, Germany

- Deep-cryogenic photonic links for room temperature to cryogenic signaling in quantum computers
- Benefits of RF photonic over coaxial in cryogenic application
 - Low thermal coupling
 - Higher bandwidth, possibility of multiplexing
 - Immunity to electromagnetic interference
 - Lightweight and flexible, reduced signal loss
- Investigation of photodiodes at cryogenic temperatures

APPROACH

Signal requirements for qubit control:

• **XY-Drive:** 4-8 GHz, -70 dBm pulse, 0.5–1 GHz, • Z Drive:

-50dBm

• **Readout:** RF reflectometry

The higher quality signaling of photonic link [1] [2] can be exploited:

 In driving signals to electronics in 4 K Stage

For XY drive

For Z-Flux drive

METHODOLOGY

To fully understand the behavior of the photodiode in low temperature:

• 2 Photodiodes: Commercial Si and InGaAs

 DC Analysis: IV curve, responsivity and linearity of diodes Frequency response (S21 measurement) AC Analysis:

Semiconductor device analyzer, network analyzer Equipment:

SETUP AT FZJ ZEA-2

SPONSORED BY THE

IV Measurement of Si and InGaAs photodiodes

Linearity of Si and InGaAs photodiodes

- Threshold voltage increase and reduction of current in cryogenic
- Si PD has more current reduction due to indirect bandgap

AC MEASUREMENT

Frequency response of Si and InGaAs photodiodes

 Both photodiodes shows higher bandwidth in cryogenics due to the decrease in junction capacitance with temperature

Devices used from Thorlabs:

- Lasers: LP904, LPSC-1310
- Modulator: LDM9LP
- Photodiodes: FDS02, FGA01

References:

[1] Usami, K. & Nakamura, Y., "A photonic link for quantum circuits", Nat. Electron. 4, 323–324 (2021) [2] Lecocq, F. et al., "Control and readout of a superconducting qubit using a photonic link", Nature 591, 575–579 (2021)