001032079 001__ 1032079
001032079 005__ 20250203133215.0
001032079 0247_ $$2doi$$a10.1016/j.jmro.2024.100152
001032079 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05982
001032079 0247_ $$2WOS$$aWOS:001255177000001
001032079 037__ $$aFZJ-2024-05982
001032079 082__ $$a530
001032079 1001_ $$0P:(DE-HGF)0$$aHerr, Kevin$$b0
001032079 245__ $$aBiradicals based on PROXYL containing building blocks for efficient dynamic nuclear polarization in biotolerant media
001032079 260__ $$aAmsterdam$$bElsevier$$c2024
001032079 3367_ $$2DRIVER$$aarticle
001032079 3367_ $$2DataCite$$aOutput Types/Journal article
001032079 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730095361_25079
001032079 3367_ $$2BibTeX$$aARTICLE
001032079 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001032079 3367_ $$00$$2EndNote$$aJournal Article
001032079 520__ $$aA versatile strategy for synthesizing tailored peptide based biradicals is presented. By labeling the protected amino acid hydroxyproline with PROXYL via the OH functionality and using this building block in solid phase peptide synthesis (SPPS), the obtained peptides become polarization agents for DNP enhanced solid-state NMR in biotolerant media. To analyze the effect of the radical position on the enhancement factor, three different biradicals are synthesized. The PROXYL spin-label is inserted in a collagen inspired artificial peptide sequence by binding through the OH group of the hydroxyproline moieties at specific position in the chain. This labeling strategy is universally applicable for any hydroxyproline position in a peptide sequence since solid-phase peptide synthesis is used to insert the building block. High performance liquid chromatography (HPLC) and mass spectrometry (MS) analyses show the successful introduction of the spin label in the peptide chain and electron paramagnetic resonance (EPR) spectroscopy confirms its activity. Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) experiments performed on frozen aqueous glycerol-d8 solutions containing these peptide radicals show significantly higher enhancement factors of up to 45 in 1H→13C cross polarization magic angle spinning (CP MAS) experiments compared to an analogous mono-radical peptide including this building block (ε ≈ 14). Compared to commercial biradicals such as AMUPol for which enhancement factors > 100 have been obtained in the past and which have been optimized in their structure, the obtained enhancement up to 45 for our biradicals presents a significant progress in radical design.
001032079 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001032079 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001032079 7001_ $$0P:(DE-HGF)0$$aHöfler, Mark V.$$b1
001032079 7001_ $$0P:(DE-Juel1)132002$$aHeise, Henrike$$b2$$ufzj
001032079 7001_ $$0P:(DE-HGF)0$$aAussenac, Fabien$$b3
001032079 7001_ $$0P:(DE-HGF)0$$aKornemann, Felix$$b4
001032079 7001_ $$0P:(DE-HGF)0$$aRosenberger, David$$b5
001032079 7001_ $$0P:(DE-HGF)0$$aBrodrecht, Martin$$b6
001032079 7001_ $$0P:(DE-HGF)0$$ade Oliveira, Marcos$$b7
001032079 7001_ $$0P:(DE-HGF)0$$aBuntkowsky, Gerd$$b8$$eCorresponding author
001032079 7001_ $$00000-0001-6214-2272$$aGutmann, Torsten$$b9$$eCorresponding author
001032079 773__ $$0PERI:(DE-600)3023963-1$$a10.1016/j.jmro.2024.100152$$gVol. 20, p. 100152 -$$p100152 -$$tJournal of magnetic resonance open$$v20$$x2666-4410$$y2024
001032079 8564_ $$uhttps://juser.fz-juelich.de/record/1032079/files/1-s2.0-S2666441024000074-main.pdf$$yOpenAccess
001032079 8564_ $$uhttps://juser.fz-juelich.de/record/1032079/files/1-s2.0-S2666441024000074-main.gif?subformat=icon$$xicon$$yOpenAccess
001032079 8564_ $$uhttps://juser.fz-juelich.de/record/1032079/files/1-s2.0-S2666441024000074-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001032079 8564_ $$uhttps://juser.fz-juelich.de/record/1032079/files/1-s2.0-S2666441024000074-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001032079 8564_ $$uhttps://juser.fz-juelich.de/record/1032079/files/1-s2.0-S2666441024000074-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001032079 909CO $$ooai:juser.fz-juelich.de:1032079$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001032079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132002$$aForschungszentrum Jülich$$b2$$kFZJ
001032079 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001032079 9141_ $$y2024
001032079 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001032079 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-15T12:13:11Z
001032079 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-15T12:13:11Z
001032079 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001032079 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-02-15T12:13:11Z
001032079 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
001032079 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
001032079 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001032079 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001032079 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001032079 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-07
001032079 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001032079 920__ $$lyes
001032079 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001032079 980__ $$ajournal
001032079 980__ $$aVDB
001032079 980__ $$aUNRESTRICTED
001032079 980__ $$aI:(DE-Juel1)IBI-7-20200312
001032079 9801_ $$aFullTexts