001     1032079
005     20250203133215.0
024 7 _ |a 10.1016/j.jmro.2024.100152
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05982
|2 datacite_doi
024 7 _ |a WOS:001255177000001
|2 WOS
037 _ _ |a FZJ-2024-05982
082 _ _ |a 530
100 1 _ |a Herr, Kevin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Biradicals based on PROXYL containing building blocks for efficient dynamic nuclear polarization in biotolerant media
260 _ _ |a Amsterdam
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1730095361_25079
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A versatile strategy for synthesizing tailored peptide based biradicals is presented. By labeling the protected amino acid hydroxyproline with PROXYL via the OH functionality and using this building block in solid phase peptide synthesis (SPPS), the obtained peptides become polarization agents for DNP enhanced solid-state NMR in biotolerant media. To analyze the effect of the radical position on the enhancement factor, three different biradicals are synthesized. The PROXYL spin-label is inserted in a collagen inspired artificial peptide sequence by binding through the OH group of the hydroxyproline moieties at specific position in the chain. This labeling strategy is universally applicable for any hydroxyproline position in a peptide sequence since solid-phase peptide synthesis is used to insert the building block. High performance liquid chromatography (HPLC) and mass spectrometry (MS) analyses show the successful introduction of the spin label in the peptide chain and electron paramagnetic resonance (EPR) spectroscopy confirms its activity. Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) experiments performed on frozen aqueous glycerol-d8 solutions containing these peptide radicals show significantly higher enhancement factors of up to 45 in 1H→13C cross polarization magic angle spinning (CP MAS) experiments compared to an analogous mono-radical peptide including this building block (ε ≈ 14). Compared to commercial biradicals such as AMUPol for which enhancement factors > 100 have been obtained in the past and which have been optimized in their structure, the obtained enhancement up to 45 for our biradicals presents a significant progress in radical design.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Höfler, Mark V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Heise, Henrike
|0 P:(DE-Juel1)132002
|b 2
|u fzj
700 1 _ |a Aussenac, Fabien
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kornemann, Felix
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rosenberger, David
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Brodrecht, Martin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a de Oliveira, Marcos
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Buntkowsky, Gerd
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Gutmann, Torsten
|0 0000-0001-6214-2272
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.jmro.2024.100152
|g Vol. 20, p. 100152 -
|0 PERI:(DE-600)3023963-1
|p 100152 -
|t Journal of magnetic resonance open
|v 20
|y 2024
|x 2666-4410
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1032079/files/1-s2.0-S2666441024000074-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1032079/files/1-s2.0-S2666441024000074-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1032079/files/1-s2.0-S2666441024000074-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1032079/files/1-s2.0-S2666441024000074-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1032079/files/1-s2.0-S2666441024000074-main.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1032079
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132002
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-15T12:13:11Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-15T12:13:11Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-02-15T12:13:11Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21