001032080 001__ 1032080 001032080 005__ 20241112121527.0 001032080 0247_ $$2doi$$a10.1021/acs.chemrev.1c00852 001032080 0247_ $$2ISSN$$a0009-2665 001032080 0247_ $$2ISSN$$a1520-6890 001032080 0247_ $$2pmid$$a35238547 001032080 0247_ $$2WOS$$aWOS:000823422100001 001032080 037__ $$aFZJ-2024-05983 001032080 082__ $$a540 001032080 1001_ $$0P:(DE-HGF)0$$aAhlawat, Sahil$$b0 001032080 245__ $$aSolid-State NMR: Methods for Biological Solids 001032080 260__ $$aWashington, DC$$bACS Publ.$$c2022 001032080 3367_ $$2DRIVER$$aarticle 001032080 3367_ $$2DataCite$$aOutput Types/Journal article 001032080 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730119711_19543 001032080 3367_ $$2BibTeX$$aARTICLE 001032080 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001032080 3367_ $$00$$2EndNote$$aJournal Article 001032080 520__ $$aIn the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100’s of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy. 001032080 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0 001032080 588__ $$aDataset connected to DataCite 001032080 7001_ $$00000-0002-5151-3987$$aMote, Kaustubh R.$$b1 001032080 7001_ $$0P:(DE-Juel1)180657$$aLakomek, Nils-Alexander$$b2$$ufzj 001032080 7001_ $$00000-0003-3531-3181$$aAgarwal, Vipin$$b3$$eCorresponding author 001032080 773__ $$0PERI:(DE-600)2003609-7$$a10.1021/acs.chemrev.1c00852$$gVol. 122, no. 10, p. 9643 - 9737$$n10$$p9643 - 9737$$tChemical reviews$$v122$$x0009-2665$$y2022 001032080 8564_ $$uhttps://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.pdf$$yRestricted 001032080 8564_ $$uhttps://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.gif?subformat=icon$$xicon$$yRestricted 001032080 8564_ $$uhttps://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 001032080 8564_ $$uhttps://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.jpg?subformat=icon-180$$xicon-180$$yRestricted 001032080 8564_ $$uhttps://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.jpg?subformat=icon-640$$xicon-640$$yRestricted 001032080 909CO $$ooai:juser.fz-juelich.de:1032080$$pVDB 001032080 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180657$$aForschungszentrum Jülich$$b2$$kFZJ 001032080 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0 001032080 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-26$$wger 001032080 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM REV : 2022$$d2023-08-26 001032080 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26 001032080 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26 001032080 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26 001032080 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26 001032080 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26 001032080 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26 001032080 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26 001032080 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26 001032080 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-26 001032080 915__ $$0StatID:(DE-HGF)9960$$2StatID$$aIF >= 60$$bCHEM REV : 2022$$d2023-08-26 001032080 920__ $$lyes 001032080 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0 001032080 980__ $$ajournal 001032080 980__ $$aVDB 001032080 980__ $$aI:(DE-Juel1)IBI-7-20200312 001032080 980__ $$aUNRESTRICTED