001032080 001__ 1032080
001032080 005__ 20241112121527.0
001032080 0247_ $$2doi$$a10.1021/acs.chemrev.1c00852
001032080 0247_ $$2ISSN$$a0009-2665
001032080 0247_ $$2ISSN$$a1520-6890
001032080 0247_ $$2pmid$$a35238547
001032080 0247_ $$2WOS$$aWOS:000823422100001
001032080 037__ $$aFZJ-2024-05983
001032080 082__ $$a540
001032080 1001_ $$0P:(DE-HGF)0$$aAhlawat, Sahil$$b0
001032080 245__ $$aSolid-State NMR: Methods for Biological Solids
001032080 260__ $$aWashington, DC$$bACS Publ.$$c2022
001032080 3367_ $$2DRIVER$$aarticle
001032080 3367_ $$2DataCite$$aOutput Types/Journal article
001032080 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730119711_19543
001032080 3367_ $$2BibTeX$$aARTICLE
001032080 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001032080 3367_ $$00$$2EndNote$$aJournal Article
001032080 520__ $$aIn the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100’s of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
001032080 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001032080 588__ $$aDataset connected to DataCite
001032080 7001_ $$00000-0002-5151-3987$$aMote, Kaustubh R.$$b1
001032080 7001_ $$0P:(DE-Juel1)180657$$aLakomek, Nils-Alexander$$b2$$ufzj
001032080 7001_ $$00000-0003-3531-3181$$aAgarwal, Vipin$$b3$$eCorresponding author
001032080 773__ $$0PERI:(DE-600)2003609-7$$a10.1021/acs.chemrev.1c00852$$gVol. 122, no. 10, p. 9643 - 9737$$n10$$p9643 - 9737$$tChemical reviews$$v122$$x0009-2665$$y2022
001032080 8564_ $$uhttps://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.pdf$$yRestricted
001032080 8564_ $$uhttps://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.gif?subformat=icon$$xicon$$yRestricted
001032080 8564_ $$uhttps://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001032080 8564_ $$uhttps://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.jpg?subformat=icon-180$$xicon-180$$yRestricted
001032080 8564_ $$uhttps://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.jpg?subformat=icon-640$$xicon-640$$yRestricted
001032080 909CO $$ooai:juser.fz-juelich.de:1032080$$pVDB
001032080 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180657$$aForschungszentrum Jülich$$b2$$kFZJ
001032080 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001032080 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-26$$wger
001032080 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM REV : 2022$$d2023-08-26
001032080 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001032080 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001032080 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
001032080 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
001032080 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001032080 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001032080 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001032080 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001032080 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-26
001032080 915__ $$0StatID:(DE-HGF)9960$$2StatID$$aIF >= 60$$bCHEM REV : 2022$$d2023-08-26
001032080 920__ $$lyes
001032080 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001032080 980__ $$ajournal
001032080 980__ $$aVDB
001032080 980__ $$aI:(DE-Juel1)IBI-7-20200312
001032080 980__ $$aUNRESTRICTED