001 | 1032080 | ||
005 | 20241112121527.0 | ||
024 | 7 | _ | |a 10.1021/acs.chemrev.1c00852 |2 doi |
024 | 7 | _ | |a 0009-2665 |2 ISSN |
024 | 7 | _ | |a 1520-6890 |2 ISSN |
024 | 7 | _ | |a 35238547 |2 pmid |
024 | 7 | _ | |a WOS:000823422100001 |2 WOS |
037 | _ | _ | |a FZJ-2024-05983 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Ahlawat, Sahil |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Solid-State NMR: Methods for Biological Solids |
260 | _ | _ | |a Washington, DC |c 2022 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1730119711_19543 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100’s of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy. |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Mote, Kaustubh R. |0 0000-0002-5151-3987 |b 1 |
700 | 1 | _ | |a Lakomek, Nils-Alexander |0 P:(DE-Juel1)180657 |b 2 |u fzj |
700 | 1 | _ | |a Agarwal, Vipin |0 0000-0003-3531-3181 |b 3 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.chemrev.1c00852 |g Vol. 122, no. 10, p. 9643 - 9737 |0 PERI:(DE-600)2003609-7 |n 10 |p 9643 - 9737 |t Chemical reviews |v 122 |y 2022 |x 0009-2665 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1032080/files/ahlawat-et-al-2022-solid-state-nmr-methods-for-biological-solids.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1032080 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)180657 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-26 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM REV : 2022 |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-26 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-26 |
915 | _ | _ | |a IF >= 60 |0 StatID:(DE-HGF)9960 |2 StatID |b CHEM REV : 2022 |d 2023-08-26 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|