001032097 001__ 1032097
001032097 005__ 20250129092511.0
001032097 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05996
001032097 037__ $$aFZJ-2024-05996
001032097 041__ $$aEnglish
001032097 1001_ $$0P:(DE-Juel1)184393$$aMutum, Santosh$$b0$$eCorresponding author$$ufzj
001032097 1112_ $$aApplied Superconductivity Conference 2024$$cSalt Lake City$$d2024-09-01 - 2024-09-06$$gASC 24$$wUSA
001032097 245__ $$aPerformance and signal quality analysis of a photonic link from room temperature to 6K using laser-photodiodes
001032097 260__ $$c2024
001032097 3367_ $$033$$2EndNote$$aConference Paper
001032097 3367_ $$2BibTeX$$aINPROCEEDINGS
001032097 3367_ $$2DRIVER$$aconferenceObject
001032097 3367_ $$2ORCID$$aCONFERENCE_POSTER
001032097 3367_ $$2DataCite$$aOutput Types/Conference Poster
001032097 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1730268751_26960$$xAfter Call
001032097 520__ $$aQuantum computers rely on qubits, which are sensitive to temperature and are kept in cryogenic environments to reduce thermal disruptions. Maintaining stable operation at millikelvin temperatures is essential, requiring minimal power consumption and electronic interference in the cryogenic chamber, along with optimal thermal isolation. Effectively controlling qubits requires high-frequency signals with substantial data bandwidth. In large-scale quantum systems operating at low temperatures, establishing robust signal connections between the cooled core and external components at room temperature is crucial. Traditional coaxial cable connections encounter limitations when scaling to thousands of qubits due to cabling bottlenecks. A promising alternative is the use of a compact multiplexed photonic link utilizing a laser-photodiode setup, which also incorporates reduced thermal conductivity. Given that the current signal in superconducting qubits is crucial for encoding and manipulating quantum information, higher-quality signals with low noise serve as a key element in the control and operation of the qubit, allowing for the execution of quantum algorithms in a superconducting quantum computing system. Within the project QSolid - Quantum Computer in the Solid State, funded by the Federal Ministry of Education and Research (BMBF), this study focuses on setting up unbiased low optical loss photonic links in a cryostat to obtain higher-quality signal with a low thermal impact profile. The research demonstrates the performance of Silicon and InGaAs photodiodes at temperatures as low as 6K, along with frequency responses, paving the way for measurements down to millikelvin levels. The current setup achieves a commendable low optical loss of -1.5 dB.
001032097 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001032097 7001_ $$0P:(DE-Juel1)159350$$aGrewing, Christian$$b1$$ufzj
001032097 7001_ $$0P:(DE-Juel1)177765$$aCabrera Galicia, Alfonso Rafael$$b2$$ufzj
001032097 7001_ $$0P:(DE-Juel1)133936$$aSchlösser, Mario$$b3$$ufzj
001032097 7001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b4$$ufzj
001032097 7001_ $$0P:(DE-Juel1)196006$$aChava, Phanish$$b5$$ufzj
001032097 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b6$$ufzj
001032097 8564_ $$uhttps://juser.fz-juelich.de/record/1032097/files/Poster_pdf.pdf$$yOpenAccess
001032097 8564_ $$uhttps://juser.fz-juelich.de/record/1032097/files/Poster_pdf.gif?subformat=icon$$xicon$$yOpenAccess
001032097 8564_ $$uhttps://juser.fz-juelich.de/record/1032097/files/Poster_pdf.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001032097 8564_ $$uhttps://juser.fz-juelich.de/record/1032097/files/Poster_pdf.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001032097 8564_ $$uhttps://juser.fz-juelich.de/record/1032097/files/Poster_pdf.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001032097 909CO $$ooai:juser.fz-juelich.de:1032097$$pdriver$$pVDB$$popen_access$$popenaire
001032097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184393$$aForschungszentrum Jülich$$b0$$kFZJ
001032097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159350$$aForschungszentrum Jülich$$b1$$kFZJ
001032097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177765$$aForschungszentrum Jülich$$b2$$kFZJ
001032097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133936$$aForschungszentrum Jülich$$b3$$kFZJ
001032097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b4$$kFZJ
001032097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196006$$aForschungszentrum Jülich$$b5$$kFZJ
001032097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b6$$kFZJ
001032097 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001032097 9141_ $$y2024
001032097 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001032097 920__ $$lyes
001032097 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001032097 9801_ $$aFullTexts
001032097 980__ $$aposter
001032097 980__ $$aVDB
001032097 980__ $$aUNRESTRICTED
001032097 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001032097 981__ $$aI:(DE-Juel1)PGI-4-20110106