001     1032097
005     20250129092511.0
024 7 _ |a 10.34734/FZJ-2024-05996
|2 datacite_doi
037 _ _ |a FZJ-2024-05996
041 _ _ |a English
100 1 _ |a Mutum, Santosh
|0 P:(DE-Juel1)184393
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Applied Superconductivity Conference 2024
|g ASC 24
|c Salt Lake City
|d 2024-09-01 - 2024-09-06
|w USA
245 _ _ |a Performance and signal quality analysis of a photonic link from room temperature to 6K using laser-photodiodes
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1730268751_26960
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Quantum computers rely on qubits, which are sensitive to temperature and are kept in cryogenic environments to reduce thermal disruptions. Maintaining stable operation at millikelvin temperatures is essential, requiring minimal power consumption and electronic interference in the cryogenic chamber, along with optimal thermal isolation. Effectively controlling qubits requires high-frequency signals with substantial data bandwidth. In large-scale quantum systems operating at low temperatures, establishing robust signal connections between the cooled core and external components at room temperature is crucial. Traditional coaxial cable connections encounter limitations when scaling to thousands of qubits due to cabling bottlenecks. A promising alternative is the use of a compact multiplexed photonic link utilizing a laser-photodiode setup, which also incorporates reduced thermal conductivity. Given that the current signal in superconducting qubits is crucial for encoding and manipulating quantum information, higher-quality signals with low noise serve as a key element in the control and operation of the qubit, allowing for the execution of quantum algorithms in a superconducting quantum computing system. Within the project QSolid - Quantum Computer in the Solid State, funded by the Federal Ministry of Education and Research (BMBF), this study focuses on setting up unbiased low optical loss photonic links in a cryostat to obtain higher-quality signal with a low thermal impact profile. The research demonstrates the performance of Silicon and InGaAs photodiodes at temperatures as low as 6K, along with frequency responses, paving the way for measurements down to millikelvin levels. The current setup achieves a commendable low optical loss of -1.5 dB.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
700 1 _ |a Grewing, Christian
|0 P:(DE-Juel1)159350
|b 1
|u fzj
700 1 _ |a Cabrera Galicia, Alfonso Rafael
|0 P:(DE-Juel1)177765
|b 2
|u fzj
700 1 _ |a Schlösser, Mario
|0 P:(DE-Juel1)133936
|b 3
|u fzj
700 1 _ |a Vliex, Patrick
|0 P:(DE-Juel1)171680
|b 4
|u fzj
700 1 _ |a Chava, Phanish
|0 P:(DE-Juel1)196006
|b 5
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 6
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1032097/files/Poster_pdf.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1032097/files/Poster_pdf.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1032097/files/Poster_pdf.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1032097/files/Poster_pdf.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1032097/files/Poster_pdf.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1032097
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184393
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159350
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177765
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133936
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171680
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)196006
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21