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A R T I C L E I N F O A B S T R A C T

Editor: A. Schwenk In this work, we present a calculation of the triton 𝛽-decay lifetime using Nuclear Lattice Effective Field Theory 
(NLEFT) at next-to-next-to-next-to-leading order in the chiral expansion. By incorporating a non-perturbative 
treatment of the higher-order corrections, we achieve consistent predictions for the Fermi and Gamow-Teller 
matrix elements, which are crucial for determining the triton lifetime. Our results are consistent with earlier 
theoretical calculations, confirming the robustness of our approach. This study marks a significant advancement 
in the systematic application of NLEFT to nuclear 𝛽-decay processes, paving the way for future high-precision 
calculations in more complex nuclear systems. Additionally, we discuss potential improvements to our approach, 
including the explicit inclusion of two-pion exchange mechanisms and the refinement of three-nucleon forces. 
These developments are essential for extending the applicability of NLEFT to a broader range of nuclear 
phenomena, including neutrinoless double-𝛽 decay.
1. Introduction

Three-nucleon forces (3NFs) play an important role in precision cal-

culations of nuclei and nuclear matter, for reviews see e.g. Refs. [1–4]. 
Within chiral effective field theory (EFT) as advocated by Weinberg, 
3NFs appear at next-to-next-to-leading order (N2LO) [5–7] in terms of 
the three topologies displayed in Fig. 1. These different terms come 
with low-energy constants (LECs). In case of the two-pion exchange, 
these LECs that are called 𝑐1,3,4. They can be precisely determined from 
pion-nucleon scattering [8], demonstrating the power of chiral symme-

try in connecting seemingly unrelated processes. To pin down the LECs 
𝑐𝐷 and 𝑐𝐸 , that parameterize the one-pion exchange and contact term 
topologies at this order, respectively, one must consider observables in 
three-nucleon systems. In a first systematic analysis of neutron-deuteron 
scattering at N2LO, these LECs were fixed from the triton binding energy 
and the neutron-doublet scattering length [9], although these quanti-

ties display some correlation. It was pointed out first in Ref. [10] that 
triton 𝛽-decay, that is the triton lifetime, together with the binding en-

ergies in the 𝐴 = 3 system can lead to a robust determination of 𝑐𝐷 and 
𝑐𝐸 . It could later be shown that using the cross section minimum in 
low-energy proton-deuteron as well as neutron-deuteron scattering can 
also leads to a fairly precise determination of the short-distance LEC 
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𝑐𝐷 , see Ref. [11] (and references therein). It is worth pointing out that 
in these continuum approaches, a completely consistent regularization 
scheme for two- and three-body forces as well as external currents has 
only become available very recently [12]. In pionless EFT, where all 
interactions are represented by contact terms, triton 𝛽-decay has been 
studied in Ref. [13].

Here, we approach the problem of triton 𝛽-decay from a different 
perspective, namely in the framework of Nuclear Lattice Effective Field 
Theory (NLEFT). For an introduction to that method, see Refs. [14,15]. 
This lattice approach has proven successful in solving problems that 
were previously considered intractable with conventional methods, like 
the first ab initio calculations of the Hoyle state in the spectrum of 
12C [16] and of alpha-alpha scattering [17]. These calculations were 
performed at N2LO on a coarse lattice, which limits the theoretical 
precision. A major step forward in achieving high precision in NLEFT 
for many-nucleon systems was recently made using the so-called the 
wavefunction matching method at next-to-next-to-next-to-leading order 
(N3LO) in the chiral expansion [18]. High-fidelity chiral interactions 
at N3LO often encounter significant sign problems due to the cancel-

lation of positive and negative contributions, making Monte Carlo cal-

culations impractical. The wavefunction matching method introduced 
in Ref. [18] resolves this issue for two-nucleon interactions at N3LO. 
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Fig. 1. Topologies of the leading order 3NFs in chiral EFT: Two-pion exchange 
(left), one-pion exchange (middle) and six-fermion contact term (right).

This method was successfully applied to light nuclei, medium-mass nu-

clei (𝐴 ≤ 58), neutron matter, and nuclear matter, and good agreement 
with the empirical data was found. Despite the success of the wavefunc-

tion matching method in improving theoretical precision, the calcula-

tions in Ref. [18] were carried out using first-order perturbation theory. 
Since first-order perturbation theory only provides corrections to the en-

ergy and not to the wavefunctions, triton 𝛽-decay calculations at N3LO, 
requiring higher-order perturbative corrections for realistic wave func-

tions, cannot be directly performed using the methods from Ref. [18]. 
One potential solution to this challenge is to extend the calculations 
to second-order perturbation theory. Recent advances in perturbative 
quantum Monte Carlo (QMC) methods, as detailed in Ref. [19], provide 
an effective framework for incorporating higher-order perturbative cor-

rections, making it particularly well-suited for applications to heavier 
nuclei. Alternatively, fully non-perturbative methods can be applied to 
light nuclear systems to generate realistic wave functions at N3LO, as 
required for triton 𝛽-decay calculations. In this paper, we adopt this 
non-perturbative approach.

In our calculations, we use the same action as in Ref. [18]. Our find-

ings indicate that for a given set of LECs, our theoretical precision aligns 
well with earlier theoretical calculations in continuum, allowing us to 
explore variations of the smeared 𝑐𝐷 and 𝑐𝐸 LECs and their impact on 
the triton lifetime. It should also be stressed that the triton 𝛽-decay offers 
a benchmark for investigating the weak interactions in nuclei, even-

tually paving the way for the calculation of the neutrinoless double-𝛽

decay in nuclei like e.g. 48Ca or 76Ge. By incorporating the wavefunction 
matching method and advances in perturbative quantum Monte Carlo, 
NLEFT is now equipped to address these more complex systems, paving 
the way for high-precision studies of heavier nuclei.

This article is organized as follows. In Sec. 2 we present the underly-

ing formalism and the treatment of the 3NFs. In Sec. 3, we display and 
discuss the results on the various matrix elements in triton 𝛽-decay and 
their sensitivity to the LECs. We end with a short summary and outlook 
in Sec. 4. In Appendix A, we display the two- and three-nucleon forces 
on the lattice as they are used here.

2. Formalism

Triton 𝛽-decay is the process where 3H decays into 3He, an electron, 
and an electron antineutrino,

3H→ 3He + 𝑒− + �̄�𝑒 . (1)

The matrix elements of the weak transition are crucial to understanding 
this decay process. This section outlines the formalism used in calcu-

lating the relevant matrix elements, including the Fermi 𝐹 ∼ 𝜏 and the 
Gamow-Teller 𝐺𝑇 ∼ 𝜎𝜏 operators, which are essential for describing 
the nuclear structure and weak interaction dynamics involved in triton 
𝛽-decay. Here, 𝜏 and 𝜎 are the nucleon isospin and spin operators, re-

spectively.

The half-life of triton 𝛽-decay, 𝑡1∕2, can be expressed in terms of the 
Fermi and Gamow-Teller matrix elements as follows [20],

𝐾∕𝐺2
𝑉

2

(1 + 𝛿𝑅) 𝑡1∕2 𝑓𝑉 = ⟨𝐹 ⟩2 + (𝑓𝐴∕𝑓𝑉 )𝑔2𝐴 ⟨𝐺𝑇 ⟩2 , (2)
Physics Letters B 859 (2024) 139086

where 𝐾 = 2𝜋3 ln 2∕𝑚5
𝑒 (with 𝑚𝑒 the electron mass), 𝐺𝑉 is the weak 

interaction vector coupling constant, 𝑓𝑉 = 2.8355 × 10−6 and 𝑓𝐴 =
2.8506 × 10−6 are the Fermi functions [21], 𝑔𝐴 = 1.287 is the ax-

ial coupling constant, and 𝛿𝑅 accounts for radiative corrections of 
1.9% [22]. The comparative half-life of triton, (1 + 𝛿𝑅) 𝑡1∕2 𝑓𝑉 , is taken 
as 1129.6(30) s [23] (1134.6(30) s [24]), and the value of 𝐾∕𝐺2

𝑉
is 

6146.6(6) s [25] (6144.5(19) s [26]).

The matrix elements ⟨𝐹 ⟩ and ⟨𝐺𝑇 ⟩ are calculated using the wave 
functions of 3H and 3He. These wave functions can be obtained em-

ploying the hyperspherical-harmonics expansion method [24] or the 
non-perturbative Faddeev equations [27] from high-precision nuclear 
interactions, such as the Argonne v18 two-nucleon potential and the 
Urbana-IX three-nucleon potential as well as chiral interactions. For the 
Fermi operator, the calculation based on the Argonne v18 two-nucleon 
forces supplemented with the Urbana-IX 3NF gives

⟨𝐹 ⟩ = 3∑
𝑛=1

⟨3He‖𝜏𝑛,+‖3H⟩ = 0.9998 , (3)

where 𝜏𝑛,+ is the isospin-raising operator. This value indicates a near-

perfect overlap of the isospin components between the initial and final 
states, with minor corrections due to charge-symmetry breaking and 
electromagnetic effects in the nuclear interaction [24]. The Gamow-

Teller matrix element, which involves both spin and isospin operators, 
is expressed as,

⟨𝐺𝑇 ⟩ = 3∑
𝑛=1

⟨3He||𝜎𝑛𝜏𝑛,+||3H⟩ . (4)

The empirical value of the Gamow-Teller operator can be deduced from 
the triton lifetime,

⟨𝐺𝑇 ⟩emp =

√√√√ (𝐾∕𝐺2
𝑉
)∕[(1 + 𝛿𝑅) 𝑡1∕2 𝑓𝑉 ] − ⟨𝐹 ⟩2

(𝑓𝐴∕𝑓𝑉 )𝑔2𝐴
= 1.6497(23) . (5)

This value is obtained by fitting the theoretical predictions to the experi-

mental data, including corrections for meson-exchange currents (MECs) 
and relativistic effects. We use here and for the remainder of the paper 
the averaged values of Refs. [23,24] for (1 +𝛿𝑅) 𝑡1∕2 𝑓𝑉 = 1132.1(25) and 
from Refs. [25,26] for 𝐾∕𝐺2

𝑉
= 6145.5(11), respectively. It should be 

noted that in this determination of the Gamov-Teller matrix element, 
theoretical input is used to pin down the Fermi matrix element. Here, 
we will both calculate ⟨𝐹 ⟩ and ⟨𝐺𝑇 ⟩ in a consistent scheme, namely 
NLEFT, and then predict the triton lifetime.

Our approach to triton 𝛽-decay calculations employs NLEFT, and 
we briefly discuss the main ingredient of the method used here and 
refer to Ref. [18] for more details. In a nutshell, a new quantum many-

body approach, the so-called wave function matching, transforms the 
high-fidelity interaction between particles so that the wave functions of 
the high-fidelity Hamiltonian up to some finite range match that of an 
easily computable Hamiltonian. More precisely, wavefunction match-

ing operates entirely in the two-nucleon sector. For the nuclear case, 
this simplified Hamiltonian consists of Wigner SU(4) symmetric two-

nucleon forces and the properly regularized one-pion exchange, and it 
is treated fully non-pertubatively. To bring the chiral Hamiltonian 𝐻
close to the simplified Hamiltonian 𝐻𝑆 , a unitary transformation is per-

formed leading to 𝐻 ′ = 𝑈†𝐻𝑈 , and the differences to the full chiral 
Hamiltonian, 𝐻 ′ −𝐻𝑆 , are then calculated in first order perturbation 
theory. Finally, fitting the various locally and non-locally smeared 3NF 
operators to the nuclear binding energies with 3 ≤ 𝐴 ≤ 58, one can pre-

dict the corresponding nuclear charge radii as well as the equation of 
state of pure neutron as well as nuclear matter. All of these quantities 
agree with the data. In this work, we extend beyond the first-order per-

turbation theory previously used for calculations at N3LO in the chiral 
effective field theory [18], applying fully non-perturbative calculations 
to three-nucleon systems, with the corresponding Hamiltonian given in 

Appendix A. This approach allows us to obtain realistic wave functions 
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Fig. 2. The ground state energies of 3He and 3H nuclei as a function of the box size 𝐿 (left panel). The trajectory of 𝑓𝐷 – 𝑓𝐸 that leaves these energies invariant 
(right panel). The dark (light) red/blue bands refer to the 90 (99)% confidence level of the extrapolation. In the right panel the red squares display the result of our 
calculation and the blue line is a 3rd order spline interpolation to guide the eye.
necessary for accurate triton 𝛽-decay calculations at N3LO. Our method 
involves solving the Schrödinger equation for the three-nucleon system 
using the Lanczos eigenvector method [28], which has been successfully 
applied in nuclear lattice calculations. For a detailed discussion of the 
method, we refer the reader to Ref. [29], and for its early application 
in NLEFT, see Ref. [30]. The three-dimensional space is represented by 
a finite volume 𝐿 × 𝐿 × 𝐿, with 𝐿 the spatial extension, and with lat-

tice spacing 𝑎 = 1.32 fm in the spatial direction. This corresponds to 
the magic momentum cutoff of 𝑝max ≃ 465 MeV that best displays the 
hidden spin-isospin symmetry of QCD [31].

3. Results and discussion

This section presents the results of our calculation of the triton life-

time using NLEFT. We focus on the determination of the Fermi and 
Gamow-Teller matrix elements, ⟨𝐹 ⟩ and ⟨𝐺𝑇 ⟩, and analyze their de-

pendence on the strength of the 3NFs. These results are compared with 
experimental data and previous theoretical studies to evaluate the ac-

curacy and reliability of our approach.

As noted before, we employ the same lattice action as in Ref. [18], 
with the key difference being the non-perturbative treatment of the in-

teractions. Our calculations start with the determination of the ground 
state energies of 3H and 3He. Using the NLEFT framework, we obtain 
infinite-volume extrapolated ground state energies of 8.33(2) MeV and 
7.62(2) MeV, respectively, as shown in the left panel of Fig. 2. These val-

ues are slightly below the empirical values of 8.48 MeV and 7.72 MeV, 
respectively.

Next, we calculate the Fermi and Gamow-Teller matrix elements, ⟨𝐹 ⟩ and ⟨𝐺𝑇 ⟩, and examine their sensitivity to the strengths of the 
three-nucleon one-pion exchange and three-nucleon SU(4) symmetric 
potentials. The representation of these two 3NF topologies on the lat-

tice differs from that in the continuum, as the corresponding 3NFs take 
the form [18],

𝑉𝑐𝐷
= 𝑓𝐷

(
𝑉 (0)
𝑐𝐷

+ 𝑉 (1)
𝑐𝐷

+ 𝑉 (2)
𝑐𝐷

)
, (6)

𝑉𝑐𝐸
= 𝑓𝐸

(
𝑉 (0)
𝑐𝐸

+ 𝑉 (1)
𝑐𝐸

+ 𝑉 (2)
𝑐𝐸

+ 𝑉 (𝑙)
𝑐𝐸

+ 𝑉 (𝑡)
𝑐𝐸

)
, (7)

where the explicit forms of 𝑉 (𝑛)
𝑐𝐷

and 𝑉 (𝑛)
𝑐𝐸

are given in Appendix A. It 
is important to note that all these potential terms, with their various 
forms of smearing, are associated with the LECs 𝑐(𝑛)

𝐷
and 𝑐(𝑛)

𝐸
, also listed 

in Appendix A, making a direct comparison with the continuum values 
of these LECs impossible. Here, in Eqs. (6) and (7), we introduce the 
factors 𝑓𝐷 and 𝑓𝐸 to allow us to vary the overall contributions from 
the one-pion-exchange potential 𝑉𝑐𝐷

and the SU(4) symmetric short-

range potential 𝑉𝑐𝐸
. We then explore the trajectory of 𝑓𝐷 versus 𝑓𝐸 that 
3

maintains the binding energies of the three-body systems invariant [9,
10]. In the following analysis, we vary 𝑓𝐸 within the range [0.4, 1.4], 
which, due to the aforementioned correlation, causes 𝑓𝐷 to vary from 
0.7 to 1.0, as shown in the right panel of Fig. 2. Because the potential 
terms in Eqs. (6) and (7) respond differently to the three-body systems, 
the trajectory observed in Fig. 2 is more complex than the one presented 
in Ref. [10].

Since no established infinite-volume extrapolation methods exist for 
matrix elements involving different initial and final states, we employ 
the well-known plateau method from lattice QCD to extract the values 
of ⟨𝐹 ⟩ and ⟨𝐺𝑇 ⟩. This approach is illustrated in Fig. 3. Thus, the Fermi 
operator as well as the Gamow-Teller operator are simultaneously ob-

tained within the consistent framework of NLEFT, and we obtain,

⟨𝐹 ⟩ = 0.99949(11) , (8)

⟨𝐺𝑇 ⟩ = 1.6743(58) . (9)

Furthermore, in Fig. 4, these matrix elements are shown as a function 
of 𝑓𝐸 .

The uncertainty estimate is based on the variation of the operators 
over the range of 𝑓𝐸 and 𝑓𝐷 , as shown in Fig. 4, encompassing sets 
of three-body forces that describe the three-body systems equally well 
together with the uncertainties induced by the widths of the plateaus in 
Fig. 3. A similar dependence on the three-body forces was observed in 
Ref. [10]. Notably, our value of ⟨𝐹 ⟩ is close to the one given in Eq. (3). 
The corresponding lifetime is given by

(1 + 𝛿𝑅) 𝑡1∕2 𝑓𝑉 = 1105.1(74) s, (10)

where the uncertainties are also inherited from 𝐾∕𝐺2
𝑉

, but dominated 
by the uncertainties for ⟨𝐺𝑇 ⟩. In the right panel of Fig. 4, we show 
the dependence of the lifetime on the coupling 𝑓𝐸 . Additionally, we 
calculate ⟨𝐺𝑇𝐹 ⟩ using ⟨𝐹 ⟩ from Eq. (8) and the averaged empirical half-

lives from Refs. [23,24], injected into Eq. (2), giving (see also the middle 
panel in Fig. 4),

⟨𝐺𝑇𝐹 ⟩ = 1.6498(29) . (11)

4. Summary and outlook

In this study, we have performed a detailed calculation of triton 
𝛽-decay using NLEFT with the N3LO Hamiltonian as developed in 
Ref. [18], incorporating a non-perturbative treatment of the higher-

order corrections. With all parameters of the two- and three-nucleon 
forces already determined, we were able to consistently predict the 
Fermi and Gamow-Teller matrix elements given in Eqs. (8), (9) and the 
triton lifetime given in Eq. (10). This work represents a significant step 
forward in the systematic study of nuclear 𝛽 and double-𝛽 decays within 

the framework of NLEFT.
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Fig. 3. Plots of Fermi (left panel) and Gamow-Teller (right panel) matrix elements at a function of 𝐿 and the extraction of the corresponding plateaus.

Fig. 4. Plots of Fermi (left panel) and Gamow-Teller (middle panel) matrix elements and the triton lifetime (right panel) as a function of the parameter 𝑓𝐸 as defined 
in Eq. (7). The blue bands represents uncertainties estimated by a time-honored plateau. The gray band in the middle panel refers to using the averaged empirical 

cer
values together with the calculated value of ⟨𝐹 ⟩ (left panel). The impact of the un

Clearly, there are several avenues for further improvement and ex-

ploration to enhance the accuracy and scope of these calculations. First, 
the explicit inclusion of the two-pion exchange in the two-nucleon inter-

action, as discussed in Ref. [18], would enable a more consistent treat-

ment of higher-order corrections to the relevant exchange currents [32]. 
Incorporating this mechanism would align our approach more closely 
with the underlying chiral dynamics of nuclear forces.

Second, further refinement of the three-nucleon forces may be nec-

essary to address any remaining discrepancies that were not apparent 
in previous studies [18]. This includes exploring the effects of different 
regularization schemes, which could provide deeper insights into the 
structure of the 3NFs.

Lastly, the formalism for infinite volume extrapolation of matrix ele-

ments, which was not fully addressed in this work, should be developed 
to reduce finite volume effects and improve the reliability of the lat-

tice calculations. Such advancements would be crucial for extending our 
approach to more complex nuclear systems, including the study of neu-

trinoless double-𝛽 decay in heavier nuclei like 48Ca and 76Ge.

In summary, this work represents a significant step forward in the 
application of NLEFT to nuclear weak decay processes. The methodolo-

gies developed and results obtained here lay the groundwork for future 
studies aimed at achieving high-precision predictions for a wide range 
of nuclear phenomena. As we continue to refine our theoretical tools 
and expand the range of systems studied, NLEFT promises to play a cru-

cial role in advancing our understanding of such fundamental nuclear 
processes.
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Appendix A. Hamiltonian at N3LO

This section provides some details of our realistic Hamiltonian uti-

lized in the calculations. We have developed the 2NFs in the framework 
of chiral effective field theory at N3LO, with 24 LECs accurately fitted to 
match empirical partial wave phase shifts and mixing angles [33]. The 
3NFs have been recently included into the framework, by constraining 
the LECs to some selected nuclear binding energies [18].

In Ref. [33] the 2NFs were constructed using a non-local smear-

ing parameter 𝑠NL, while in Ref. [18] we have constructed 2NFs using 
another set of non-local contact operators by introducing a non-local 
regulator 𝑓Λ = exp[− 

∑2
𝑖=1(𝑝

2
𝑖
+ 𝑝′

𝑖
2)∕Λ2], where 𝑝𝑖 and 𝑝′

𝑖
are the mo-

menta of individual nucleons. We define the Hamiltonian 𝐻 as,

3 4 4

𝐻 =𝐾 + 𝑉OPE + 𝑉Coulomb + 𝑉

Q
3N + 𝑉

Q
2N +𝑊

Q
2N , (A.1)

http://www.gauss-centre.eu
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where 𝐾 is the kinetic energy term constructed using fast Fourier trans-

forms to produce the exact dispersion relation 𝐸𝑁 = 𝑝2∕(2𝑚𝑁 ), with the 
nucleon mass 𝑚𝑁 = 938.92 MeV. Further, 𝑉OPE is the one-pion-exchange 
potential defined using the regularization method given in Ref. [34],

𝑉OPE = −
𝑔2
𝐴

8𝑓 2
𝜋

∑
𝐧′ ,𝐧,𝑆′ ,𝑆,𝐼

∶ 𝜌
(0)
𝑆′,𝐼

(𝑛′)𝑓𝑆′ ,𝑆 (𝑛′ − 𝑛)𝜌(0)
𝑆,𝐼

(𝑛) ∶

−𝐶𝜋

𝑔2
𝐴

8𝑓 2
𝜋

∑
𝐧′ ,𝐧,𝑆,𝐼

∶ 𝜌
(0)
𝑆,𝐼

(𝑛′)𝑓𝜋(𝑛′ − 𝑛)𝜌(0)
𝑆,𝐼

(𝑛) ∶ , (A.2)

where 𝑔𝐴 = 1.287 the axial-vector coupling constant (adjusted to ac-

count for the Goldberger-Treiman discrepancy) [35], 𝑓𝜋 = 92.2 MeV the 
pion decay constant, and 𝜌𝑆𝐼 (𝑛) is the spin- and isospin-dependent den-

sity operator,

𝜌
(𝑑)
𝑆,𝐼

(𝑛) =
∑

𝑖,𝑗,𝑖′ ,𝑗′=0,1
𝑎†
𝑖,𝑗
(𝑛) [𝜎𝑆 ]𝑖𝑖′ [𝜎𝐼 ]𝑗𝑗′ 𝑎𝑖′ ,𝑗′ (𝑛)

+ 𝑠L

𝑑∑
|𝑛−𝑛 ′|2=1

∑
𝑖,𝑗,𝑖′ ,𝑗′=0,1

𝑎†
𝑖,𝑗
(𝑛 ′) [𝜎𝑆 ]𝑖𝑖′ [𝜎𝐼 ]𝑗𝑗′ 𝑎𝑖′ ,𝑗′ (𝑛 ′) , (A.3)

with 𝜏, ⃗𝜎 the Pauli-(iso)spin matrices and annihilation (creation) opera-

tors 𝑎 (𝑎†). Here, 𝑓𝑆′ ,𝑆 is the locally-regulated pion correlation function,

𝑓𝑆′ ,𝑆 (𝑛′ − 𝑛) = 1
𝐿3

∑
𝑞

𝑞𝑆′𝑞𝑆 𝑒−𝑖𝑞⋅(𝑛′−𝑛)−(𝑞2+𝑀2
𝜋 )∕Λ

2
𝜋

𝑞2 +𝑀2
𝜋

, (A.4)

where 𝑓𝜋 is a local regulator defined in momentum space,

𝑓𝜋(𝑛′ − 𝑛) = 1
𝐿3

∑
𝑞

𝑒−𝑖𝑞⋅(𝑛′−𝑛)−(𝑞2+𝑀2
𝜋 )∕Λ

2
𝜋 , (A.5)

with 𝑞 = 𝑝− 𝑝′ the momentum transfer (𝑝 and 𝑝′ are the relative incom-

ing and outgoing momenta). In addition, 𝐶𝜋 is the coupling constant of 
the OPE counter term given by,

𝐶𝜋 =−
Λ𝜋(Λ2

𝜋 − 2𝑀2
𝜋 ) + 2

√
𝜋𝑀3

𝜋 exp(𝑀
2
𝜋∕Λ

2
𝜋)erfc(𝑀𝜋∕Λ𝜋)

3Λ3
𝜋

, (A.6)

with Λ𝜋 = 300 MeV the regulator parameter and 𝑀𝜋 = 134.98 MeV the 
pion mass. Also, 𝑉Coulomb is the Coulomb interaction, 𝑉 Q3

3N is the 3N po-

tential, 𝑉 Q4

2N is the 2N short-range interaction at N3LO, 𝑊 Q4

2N is the 2N 
Galilean invariance restoration (GIR) interaction at N3LO. For the de-

tails of the Coulomb interaction and the two-nucleon (2N) short-range 
interactions we refer the reader to Ref. [33]. The three-nucleon (3N) 
interactions at Q3 consist of locally smeared contact interactions, one-

pion exchange interaction with that the two-nucleon contact terms are 
smeared locally, two-pion exchange potential [7,9,36], and two addi-

tional SU(4) symmetric potentials denoted by 𝑉 (𝑙)
𝑐𝐸

and 𝑉 (𝑡)
𝑐𝐸

. Therefore, 
the three-nucleon interactions at Q3 has the form

𝑉
Q3

3N = 𝑉 (0)
𝑐𝐸

+ 𝑉 (1)
𝑐𝐸

+ 𝑉 (2)
𝑐𝐸

+ 𝑉 (𝑙)
𝑐𝐸

+ 𝑉 (𝑡)
𝑐𝐸

+ 𝑉 (0)
𝑐𝐷

+ 𝑉 (1)
𝑐𝐷

+ 𝑉 (2)
𝑐𝐷

+ 𝑉
(TPE)
3N .

(A.7)

Here, we first define the two-pion exchange potential, which can be 
separated into the following three parts,

𝑉
(TPE1)
3N =

𝑐3

𝑓 2
𝜋

𝑔2
𝐴

4𝑓 2
𝜋

∑
𝑆,𝑆′,𝑆′′ ,𝐼

∑
𝑛,𝑛 ′ ,𝑛 ′′

× ∶ 𝜌
(0)
𝑆′,𝐼

(𝑛 ′)𝑓𝑆′ ,𝑆 (𝑛 ′ − 𝑛)𝑓𝑆′′ ,𝑆 (𝑛 ′′ − 𝑛)𝜌(0)
𝑆′′,𝐼

(𝑛 ′′)𝜌(0)(𝑛) ∶
(A.8)

𝑉
(TPE2)
3N = −

2𝑐1
𝑓 2
𝜋

𝑔2
𝐴
𝑀2

𝜋

4𝑓 2
𝜋

∑
𝑆,𝑆′,𝐼

∑
𝑛,𝑛 ′ ,𝑛 ′′

× ∶ 𝜌
(0)
𝑆′,𝐼

(𝑛 ′)𝑓𝜋𝜋
𝑆′ (𝑛 ′ − 𝑛)𝑓𝜋𝜋

𝑆
(𝑛 ′′ − 𝑛)𝜌(0)

𝑆,𝐼
(𝑛 ′′)𝜌(0)(𝑛) ∶ ,
5

(A.9)
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𝑉
(TPE3)
3N =

𝑐4
2𝑓 2

𝜋

(
𝑔𝐴
2𝑓𝜋

)2 ∑
𝑆1 ,𝑆2 ,𝑆3

∑
𝐼1 ,𝐼2 ,𝐼3

∑
𝑆′ ,𝑆′′

∑
𝑛,𝑛 ′ ,𝑛 ′′

𝜀𝑆1 ,𝑆2 ,𝑆3
𝜀𝐼1 ,𝐼2 ,𝐼3

× ∶ 𝜌
(0)
𝑆′,𝐼1

(𝑛 ′)𝑓𝑆′ ,𝑆1
(𝑛 ′ − 𝑛)𝑓𝑆′′ ,𝑆2

(𝑛 ′′ − 𝑛)𝜌(0)
𝑆′′,𝐼2

(𝑛 ′′)𝜌(0)
𝑆3 ,𝐼3

(𝑛) ∶,
(A.10)

where the locally smeared spin-isospin symmetric density operator is 
defined as,

𝜌(𝑑)(𝑛) =
∑

𝑖,𝑗=0,1
𝑎†
𝑖,𝑗
(𝑛)𝑎𝑖,𝑗 (𝑛) + 𝑠L

𝑑∑
|𝑛−𝑛 ′|2=1

∑
𝑖,𝑗=0,1

𝑎†
𝑖,𝑗
(𝑛 ′)𝑎𝑖,𝑗 (𝑛 ′) , (A.11)

and the LECs of two-pion exchange potentials are fixed from pion–

nucleon scattering data, 𝑐1 = −1.10(3), 𝑐3 = −5.54(6) and 𝑐4 = 4.17(4)
all in GeV−1 [8]. We now define the one-pion exchange interaction with 
the two-nucleon contact terms smeared locally,

𝑉 (𝑑)
𝑐𝐷

= −
𝑐
(𝑑)
𝐷

𝑔𝐴

4𝑓 4
𝜋Λ𝜒

∑
𝑛,𝑆,𝐼

∑
𝑛 ′ ,𝑆′

∶ 𝜌
(0)
𝑆′ ,𝐼

(𝑛 ′)𝑓𝑆′ ,𝑆 (𝑛 ′ − 𝑛)𝜌(𝑑)
𝑆,𝐼

(𝑛)𝜌(𝑑)(𝑛) ∶ ,

(A.12)

and the locally smeared contact interactions as,

𝑉 (𝑑)
𝑐𝐸

=
𝑐
(𝑑)
𝐸

6
∑

𝑛,𝑛 ′ ,𝑛 ′′

[
𝜌(𝑑)(𝑛)

]3
, (A.13)

and finally we define two additional SU(4) symmetric potentials denoted 
by 𝑉 (𝑙)

𝑐𝐸
and 𝑉 (𝑡)

𝑐𝐸
as,

𝑉 (𝑙)
𝑐𝐸

= 𝑐
(𝑙)
𝐸

∑
𝑛,𝑛 ′ ,𝑛 ′′

𝜌(𝑑)(𝑛)𝜌(𝑑)(𝑛 ′)𝜌(𝑑)(𝑛 ′′)𝛿|𝑛−𝑛 ′|2 ,1 𝛿|𝑛−𝑛 ′′|2 ,1 𝛿|𝑛 ′−𝑛 ′′|2 ,4,
(A.14)

𝑉 (𝑡)
𝑐𝐸

= 𝑐
(𝑡)
𝐸

∑
𝑛,𝑛 ′ ,𝑛 ′′

𝜌(𝑑)(𝑛)𝜌(𝑑)(𝑛 ′)𝜌(𝑑)(𝑛 ′′)𝛿|𝑛−𝑛 ′|2 ,2 𝛿|𝑛−𝑛 ′′|2 ,2 𝛿|𝑛 ′−𝑛 ′′|2 ,2 .
(A.15)

It is important to stress that in contrast to the continuum case, where 
we just have two LECs, namely 𝑐𝐸 and 𝑐𝐷 , these are smeared here 
over neighboring lattice sites and appear with independent LECs 
𝑐
(0)
𝐷,𝐸

, 𝑐(1)
𝐷,𝐸

, 𝑐(2)
𝐷,𝐸

, .... In lattice units, these LECs take the values

𝑐
(0)
𝐷

= −1.2787 , 𝑐
(1)
𝐷

= −2.5665 , 𝑐
(2)
𝐷

= −0.2578 ,

𝑐
(0)
𝐸

= 3.3724 , 𝑐
(1)
𝐸

= 4.9896 , 𝑐
(2)
𝐸

= −1.0876 ,

𝑐
(𝑙)
𝐸

= −0.4991 , 𝑐
(𝑡)
𝐸

= 0.06575 . (A.16)

Finally, we note that the pion-nucleon vertices are not smeared, so 
that we can take the values of the dimension-two LECs 4𝑐𝑖 from Ref. [8].

Data availability

Data will be made available on request.
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