
ORIGINAL ARTICLE

Climate Dynamics (2024) 62:10767–10783
https://doi.org/10.1007/s00382-024-07475-w

surface conditions (Dirmeyer et al. 2013a, b; Fischer et al. 
2007; Santanello et al. 2011, 2018; Seneviratne et al. 2010). 
Koster et al. 2004 demonstrated through ensemble global 
climate model (GCM) simulations that, on a global scale, 
SM  exerts a strong positive influence on Pr  in transitional 
zones between dry and wet climates during the boreal sum-
mer. In these regions, such as the central USA, Sahelian 
Africa, and South Asia, evapotranspiration (ET ) is both 
strong and highly sensitive to variations in SM . At a local 
scale, Findell and Eltahir 2003a, 2003b have explained the 
role of direct and indirect SM -Pr  coupling under wet-soil 
or dry-soil advantage regimes through the direct moisture 
cycle or the modification of the planetary boundary layer 
(PBL) stability to trigger convection, showing either posi-
tive (more precipitation over wet soils) or negative SM -Pr  
coupling (more precipitation over dry soils).

However, many studies have highlighted the local rel-
evance of large-scale atmospheric moisture flux dynamics 
(AMFD ), such as the low-level jet or large-scale mois-
ture transport, on SM -Pr  coupling by providing remote 

1  Introduction

The influence of land surface moisture fluxes accounts 
for a substantial fraction of the simulated changes in the 
atmospheric water cycle in climate projections (Taylor et 
al. 2012; Allan et al. 2020; Zhou et al. 2021). In particular, 
the feedback chain between soil moisture (SM ) and pre-
cipitation (Pr ) through land-atmosphere (L-A) interaction 
attracts much attention as it connects variable surface fluxes, 
planetary boundary layer processes, and the free atmosphere 
through the Local L-A Coupling (LoCo) process chain as 
a result of the surface flux sensitivity to changes in land 
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Abstract
Land-atmosphere (L-A) feedbacks are important for understanding regional climate functioning. However, the accurate 
quantification of feedback strength is challenging due to complex, nonlinear interactions and varying background atmo-
spheric conditions. In particular, the role of cloud water in the terrestrial water cycle is often ignored or simplified in 
previous L-A feedback studies, which overlook the relationship between evapotranspiration (ET) and cloud water (TQC). 
This study diagnoses the interactions between ET , TQC  and its dynamics (∆ TQC/∆ t ) under different atmospheric 
conditions by conducting correlation and a novel scaling analysis, based on a coupled regional climate model simula-
tion. Contrasting correlation relationships between ET , TQC  and ∆ TQC/∆ t  were identified, indicating the positive 
feedback between ET  and the dynamics in cloud water. Two types of positive scaling relationships between ET  and 
∆ TQC/∆ t  were identified by K-means clustering. The analysis shows a contrasting north-south distribution of the scal-
ing relationship that is similar to the spatial distribution of energy-limited and water-limited ET  regimes, highlighting 
the role of ET regimes in modulating the ET  - ∆ TQC/∆ t  scaling relationships. Moreover, the feedback strength and 
scaling relationship are affected by atmospheric moisture flux dynamics, providing remote moisture sources and altering 
dry/wet conditions. Our results highlight the role of cloud water in the atmospheric part of the L-A process chain and 
reveal the effect of different atmospheric conditions on L-A interactions based on the new analysis framework.
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moisture sources and modifying local boundary layer pro-
cesses (Dominguez and Kumar 2008; Tao et al. 2019). 
Observational studies in the U.S. Southern Great Plains 
have shown that Pr  is more closely related to moisture flux 
convergence than local ET ; the daily atmospheric moisture 
balance is mainly dominated by large-scale atmospheric 
forcing, but the dependence can also vary under dry or 
wet conditions of both the land surface and the atmosphere 
(Phillips and Klein 2014; Tao et al. 2019). Welty and Zeng 
(2018) argue that the strength of the AMFD  can modulate 
the sign of L-A, such that a low morning soil moisture tends 
to intensify subsequent afternoon precipitation (a negative 
correlation) under conditions of low moisture dynamics, 
but can also be significantly reversed to a positive correla-
tion under strong dynamics in US Great Plains with more 
precipitation over a humid land surface. Ford et al. (2015) 
found that in the same region, low-level jets can reduce the 
stability of the lower troposphere and mask the influence of 
local moisture by advecting warm and moist air from a dis-
tance. Meanwhile, AMFD  can inhibit local L-A coupling 
by transporting clouds from the originating dry land surface 
to wetter patches (Chen et al. 2020). Su et al. (2014) argue 
that AMFD  plays an important role in the development 
of positive ET -Pr  feedback by increasing the efficiency 
of moisture conversion from local ET  provided by wet 
soils to Pr . On the global scale, Qing et al. 2023 found that 
the SM -ET -Pr  coupling chain contributes mostly to the 
post-drought Pr  in humid regions, while the contribution 
of moisture flux convergence on post-drought Pr  is much 
stronger in arid regions due to enhanced low-level flux 
convergence from drying soils. WhileAMFD  was also 
found to consistently inhibit the local L-A feedback in the 
Atlantic coast and Mediterranean regions (Jach et al. 2022; 
Schwitalla et al. 2023), a more comprehensive analysis of 
its effect in Europe is still lacking and requires datasets with 
higher horizontal resolution.

The control of SM  on Pr  depends on several inter-
related processes, with a terrestrial leg representing the 
feedback between land conditions and surface fluxes, and 
an atmospheric leg representing the feedback between sur-
face fluxes and atmospheric components (Dirmeyer 2011). 
Most attention in L-A coupling analysis has been paid to the 
relationship between SM  and ET  or Pr , while intermedi-
ate processes in the process chain, such as the feedbacks 
between land surface and cloud, are still elusive (Tesch et 
al. 2023; Wei and Dirmeyer 2012) and limited. As an impor-
tant temporal storage of atmospheric moisture, clouds play 
an important role in controlling the land surface processes, 
PBL  evolution, and atmospheric energy and water bud-
gets (Betts et al. 2015; Findell and Eltahir 2003a; Sedlar 
et al. 2022; Tian et al. 2022). The occurrence of clouds can 
directly alter the surface energy budget by solar radiation 

reflection and absorption, resulting in a redistribution of 
both sensible and latent heat fluxes at the surface, which can 
influence the diurnal evolution of the PBL on a daily times-
cale by reducing the PBL  height on cloudy days (Kotthaus 
and Grimmond 2018; Tao et al. 2019; Su et al. 2023). Ulti-
mately, this will contribute to the dynamics of atmospheric 
moisture and affect convection (Berg et al. 2015; Liu et al. 
2024). In addition, the influence of atmospheric conditions 
could also affect the local moisture flux coupling by provid-
ing remote moisture sources (Ford et al. 2015; Tao et al. 
2019). Nevertheless, most of the attempts to understand 
interactions between clouds and land surface fluxes are lim-
ited to field observations, like the Atmospheric Radiation 
Measurement facility observations in the US, or reanalysis 
datasets, such as ERA5, which is criticized for accurately 
representing the coupling between clouds and the land sur-
face (Su et al. 2024). Moreover, the role of cloud water as 
part of the terrestrial water cycle has often been ignored 
despite its contrasting role in affecting ET  and land surface 
processes via controlling either radiation or near-surface 
atmospheric humidity (Berg et al. 2017; Wang et al. 2024).

This study aims to diagnose the feedbacks between ET
, cloud water and cloud water dynamics under different 
atmospheric conditions to improve our understanding of 
L-A interaction by opening the black box of the feedbacks 
between L-A moisture fluxes. For this purpose, five atmo-
spheric regimes based on dry/wet atmospheric conditions 
and the strength of the AMFD  were derived based on a 
regional climate model simulation with the fully coupled 
Terrestrial System Modeling Platform (TSMP) over the 
EURO-CORDEX 12 km domain from 1979 to 2021, in a 
one-way dynamical downscaling of ERA5 reanalysis forc-
ing data. First, both correlation and scaling analyses quan-
tify the sign and magnitude of the relationships between 
ET  and cloud moisture dynamics. Second, the effect of 
different atmospheric conditions on cloud water dynamics 
is quantified. Finally, we try to answer two questions: what 
are the relationships between ET  with cloud moisture, and 
how are their feedbacks affected by different atmospheric 
conditions?

2  Methodology

In this section, we introduce the setup and configuration 
of the TSMP regional climate system model (RCSM) and 
the simulation dataset, the model physics related to the L-A 
analysis, the dataset preprocessing, and finally the statistical 
L-A interaction analysis methods.
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2.1  Simulation data and study area

This study used TSMP simulation results from 1979 to 
2021, driven by ERA5 reanalysis (Hersbach et al. 2020) in 
a one-way single nest dynamical downscaling setup with 
prescribed daily sea surface temperature. TSMP (Shrestha 
et al. 2014; Gasper et al. 2014) consists of the atmospheric 
model COSMO (COnsortium for Small Scale MOdelling) 
(Baldauf et al. 2011; Doms and Schattler, 2002), the land 
surface model CLM (National Center for Atmospheric 
Research Community Land Model) (Oleson et al. 2008), 
and the surface-subsurface hydrologic model ParFlow (Par-
allel Flow) (Jones and Woodward 2001; Kollet and Maxwell 
2006; Maxwell 2013), which are coupled via the OASIS3-
MCT2 (Ocean Atmosphere Sea Ice Soil) coupler (Valcke 
2013). The non-hydrostatic limited area numerical weather 
prediction model COSMO in a climate mode configura-
tion simulates the atmospheric processes within the TSMP. 
COSMO provides atmospheric variables such as radiation, 

near-surface temperature, pressure, specific humidity, wind 
and precipitation to CLM3.5. The one-dimensional land 
surface model CLM3.5 serves as the lower boundary for the 
atmospheric model COSMO, which simulates the energy 
balance of the land surface. It also provides the soil moisture 
sources and sinks for the surface and subsurface model Par-
Flow, a three-dimensional, variably saturated surface-sub-
surface flow code that simulates 3D groundwater dynamics. 
The time step for ParFlow and CLM3.5 is 900  s, while 
COSMO runs with a 60 s time step. Coupling between the 
component models is applied at 900 s frequency with aver-
aged values from COSMO, and the post-processed model 
output is 3-hourly or daily means. The TSMP simulation is 
an ERA5-driven follow-up to the ERA-Interim driven simu-
lation as detailed in Furusho-Percot et al. (2019; 2022). To 
work with the strongest signal of L-A interaction, the analy-
sis only considers the summer season (JJA), and daytime 
time values (6-21UTC) when ET  is most significant (Find-
ell et al. 2024; Phillips and Klein 2014; Tao et al. 2019). In 

Fig. 1  TSMP simulation EURO-CORDEX domain (EUR-11, about 
12 km spatial resolution, 424 × 412 grid elements) (red box) and PRU-
DENCE analysis regions (black boxes). BI: British Island; SC: Scandi-

navia; ME: Middle Europe; EA: East Europe; FR: France; AL: Alpine 
region; IP: Iberian Peninsula; MD: Mediterranean region
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kg)/s; Sau is autoconversion rate (kg/kg)/s; Sac  is accretion 
rate (kg/kg)/s.

At 12 km horizontal resolution, deep and shallow con-
vection are parametrized in the COSMO model based on 
the Tiedtke scheme (Tiedtke 1989). Compared to other 
convection schemes, for example, the Tiedtke-Bechtold 
scheme (Bechtold et al. 2008) used in the ICON model 
(Zängl et al. 2015), that has been established as the next-
generation model for operational weather forecasting, the 
Tiedtke scheme’s closure assumption is based on moisture 
convergence, while the Tiedtke-Bechtold scheme combines 
both moisture convergence and convective available poten-
tial energy (CAPE) as the closure assumption. In this study, 
given the focus is on the atmospheric moisture balance 
and its relationship with land surface moisture at 12  km 
resolution, it is reasonable to utilize the Tiedtke convection 
scheme in the COSMO model. In the Tiedtke scheme, the 
shallow convection parameterization is activated when the 
moisture supply to cumulus clouds is mainly driven by the 
vertical fluxes (surface ET ), whereas penetrative deep con-
vection often occurs with large-scale moisture convergence. 
This also emphasizes the potential role of atmospheric con-
ditions in changing the relationship between ET  and cloud 
water, and the importance of diagnosing the individual con-
tribution of local or remote moisture sources to the cloud 
formation process. Therefore, in this study, we choose 
simulated ET  from CLM as the surface variable, and oth-
ers from COSMO as atmospheric variables. In particular, 
cloud water is the liquid phase water in the atmosphere that 
is not precipitable, represented by total cloud water (TQC ) 
as an instantaneous COSMO output at each output time step 
t (i.e. TQC (t). The original output of ET  from CLM is the 
flux during each 3-hour time interval, which was aggregated 
to the 3-hour sum in our analysis. Therefore, ET (t) repre-
sents the total amount of ET  in mm between the current 
time step t and the next time step t + 1.

In the analysis, ΔTQC/Δt at time step t is calculated by 
the difference between TQC  at each 3-hour time interval at 
each grid element as shown in Eq. 3, where t and t + 1 are 
the current and next time step,

∆ TQC

∆ t
(t) = TQC (t + 1)− TQC (t)� (3)

2.3  Classification of atmospheric regimes

As the analysis includes the influence of atmospheric con-
ditions on the coupling between ET  and cloud water, the 
TSMP simulation results are classified into different atmo-
spheric regimes. In the first pre-processing step, at each grid 
point, days with a low total cloud cover of less than 10% 

particular, the analysis will focus on the feedback between 
ET  and total cloud water (TQC ), representing cloud mois-
ture. Details about the selected variables will be explained 
in the following section. In line with many studies on Euro-
pean climate, the eight PRUDENCE regions (Christensen 
and Christensen 2007) are used as target domains for the 
analysis (Fig. 1).

2.2  Moisture balance of the cloud layer in 
COSMO model

In an atmospheric model, such as COSMO, cloud water 
plays an important role in the moisture balance as a tempo-
ral storage of atmospheric moisture that represents a sink or 
source for local or remote moisture exchanges (Doms et al. 
2021). Considering the entire atmospheric column (Eqs. 1),

∆ TQC

∆ t
∼= −

Zb∫

Zs

(ρ ν • ∇ q +
∂ F q

∂ z
− Pr)dz � (1)

where TQC  is the total cloud water (mm); Zs  is surface ter-
rain height (m); Zb  is cloud top height (m); v is horizontal 
wind speed (m/s); q is humidity mass fraction (kg/kg); Fq  
is vertical turbulent flux (kg/m^2 s); Pr is precipitable water 
flux (kg/m2 s); ρ  is the density of horizontal moisture flux 
(kg/m3). Changes in COSMO cloud moisture are related 
to the exchange of vertical turbulent fluxes, namely local 
updrafts of moisture transferred from ET  and downdrafts 
of moisture converted to precipitation, and horizontal cloud 
moisture advected remotely to and from the grid point by 
AMFD , based on the cloud model in the Tiedtke Mass-
Flux Scheme for cumulus parameterization during convec-
tion formation. Both local and remote moisture sources 
contribute to the sink or source of cloud moisture over an 
atmospheric column. An increase in total cloud moisture can 
only occur if the right-hand side of the equation is positive.

Similarly, the Warm Rain Scheme of Bulk Water-Con-
tinuity model for representing the microphysical processes 
of the mass fraction of hydrometeors (Eq. 2) in COSMO at 
individual droplets indicate that changes in cloud water mass 
fraction (qc ) are balanced by the rate of remote advection 
of cloud water mass fraction, moisture condensation from 
atmospheric water vapor, autoconversion, and accretion of 
cloud moisture to precipitable water, as shown below:

∂ qc
∂ t

∼= Aqc + Sc − Sau − Sac � (2)

where qc is cloud water mass fraction (kg/kg); Aqcis advec-
tion of cloud water (kg/kg)/s; Sc is condensation rate (kg/

1 3

10770



Summer evapotranspiration-cloud feedbacks in land-atmosphere interactions over Europe

of many land surface processes (Findell et al. 2024; Wang et 
al. 2024). The ET -TQC  scaling was established between 
the total amount of ET  (ET (t) during each 3-hour inter-
val and the instantaneous TQC  at the end of that interval 
(TQC (t + 1). In this context, the time lag between ET  and 
TQC  establishes a directional relationship from land sur-
face to the atmosphere. Similarly, the ET -∆ TQC/∆ t  
scaling was applied between the total amount of ET  and the 
changes in TQC  over each 3-hour interval. As discussed 
in Sect.  2.2 on microphysics equations, ET  can directly 
contribute to changes in total cloud water (∆ TQC/∆ t ), 
which is captured by the coupling between the CLM and 
COSMO models operating every 900 s from the land sur-
face to the atmosphere. Although the 3-hour output reso-
lution may smooth this coupling effect, it still reveals an 
inherent lagged relationship, suggesting a coupling from 
ET  to ∆ TQC/∆ t

To establish the scaling relationship, 20 bins are created 
based on the value of X, and the same number of data points 
are ensured in each bin. The values of Y are grouped into 
the bins and averages are calculated for each bin based on 
the grid point for all JJA seasons in the dataset combined. 
Then, a locally weighted scatterplot smoothing (LOWESS), 
or moving regression, is applied to obtain the smoothed 
scaling curves along all the binned data points by calculat-
ing the local regression to represent their co-variability. Fur-
thermore, K-means clustering was applied to the calculated 
scaling curves at each grid point to classify the types of scal-
ing. Before doing the clustering, a dynamic time-warping 
algorithm was used to calculate the similarity between the 
smoothed scaling curves. The values of ∆ TQC/∆ t  were 
first normalized to ensure a fair comparison in the shape of 
scaling curves. The optimal number of clusters was selected 
based on visual selection from 2 to 10 clusters since the cal-
culation of commonly used silhouette scores was extremely 
computationally demanding due to our large dataset with a 
grid point-based analysis.

As a third method, the co-variability of ∆ TQC/∆ t  
with the two types of moisture sources, namely ET  and 
the atmospheric moisture flux divergence, TDIV _HUM

, is then diagnosed based on the quantile-phase plot at each 
PRUDENCE region at a 3-hour resolution (Liu et al. 2020). 
The percentiles of ET  and TDIV _HUM  are calculated 
over all grid points from 1990 to 2021 and divided into 20 
percentile bins (5% for each bin). The corresponding mean 
TQC  values are then calculated in each bin to visualize the 
joint distribution of ET  and TDIV _HUM , and the joint 
effect of ET  and TDIV _HUM .

Seneviratne et al. (2010) suggested that the terms cou-
pling, feedback, and interaction should be used more consis-
tently and carefully to avoid confusion. In our analysis, we 
use the term feedback to describe the two-way interaction 

are masked out to create the Baseline regime (Rbase) of only 
cloudy days, relevant for the analysis in this study. For these 
cloudy days, to investigate the role of atmospheric aridity at 
the grid point scale, Dry (Rdry) and Wet (Rwet) regimes are 
derived based on daily total precipitation equal to 0 mm/day 
or greater than 0 mm/day from the Rbase (Tao et al. 2019; 
Sedlar et al. 2022), to represent both, surface and atmo-
spheric humidity. In addition, an AMFD  regime classifi-
cation is done based on Rbase so the AMFD  regimes have 
overlapped with Rdry and Rwet. Here, the TSMP model out-
put moisture flux convergence is used as an indicator of the 
strength of atmospheric moisture flux dynamics at each grid 
point. A positive and negative value represents convergence 
and divergence, respectively. The 33rd and 66th percentiles 
of the absolute strength of moisture flux dynamics at each 
grid point are calculated based on the original dataset, and 
the Rbase dataset of cloudy days is further classified into 
Low (Rlow) (< 33rd percentile), Medium (Rmedium) (> 33rd 
and < 66th percentile), and High (Rhigh) (> 66th percentile) 
moisture dynamics regimes (Welty and Zeng 2018).

2.4  Analysis methods

First, Pearson correlation coefficients were calculated 
between ET  and ∆ TQC/∆ t as well asTQC  to diagnose 
the strength of the feedback at daily resolution. Both ET
-TQC  and ET -∆ TQC/∆ t  correlations were calculated 
at a daily timescale, thus, all the 3-hour variables from 
Sect.  2.2 were averaged over the day for the calculation. 
Although it is criticized for the linear assumption in quanti-
fying causal relationships (Tesch et al. 2023), it is acceptable 
to use Pearson correlation analysis in this study because we 
only want to derive a general characteristic of the coupling 
strength rather than an exact quantification. Additionally, 
while the correlation analysis without time lags only shows 
the association between two variables, a coupling mecha-
nism can still be indirectly inferred when linked to other 
well-established causal relationships, as suggested by Sen-
eviratne et al. (2010).

Also, the common L-A coupling metrics, like Pearson 
correlation and sensitivity index calculated based on linear 
slope and standard deviation Dirmeyer 2011; underestimate 
the non-linear nature (Wang et al. 2021) as they are only 
centered on evaluating the relative magnitudes of the lin-
ear relationship rather than capturing the co-variability pat-
tern. Therefore, in this study, we use a bin-averaged scaling 
analysis as a second method to estimate and visualize the 
overall relationship between two variables (X and Y, as ET  
and ∆ TQC/∆ t  or TQC , respectively) and to describe 
their nonlinear functional relationship. It is conducted at a 
3-hour resolution for each grid point as neglecting short-
term effects could underestimate strong diurnal variations 
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area under all atmospheric regimes. The strongest negative 
feedback is preferentially found in FR, SC, BI, ME, SC and 
northern IP, i.e. the western Atlantic coastal region, while a 
relatively weak feedback is found in MD, EA and southern 
IP. Interestingly, the weakly correlated regions correspond 
to those where latent heat flux (LH ) and sensible heat flux 
(SH ) are also negatively correlated as shown in Fig. S1 in 
Supplementary Information (SI). Also, the absolute value of 
the correlation coefficients under Rdry is much smaller than 
under Rwet, even close to 0 in the MD coastal and SC moun-
tain regions. The differences in the three AMFD  regimes 
are also evident in that the negative correlation coefficient 
generally decreases with increased moisture dynamics.

However, when looking at the correlation between ET  
and the dynamics of cloud moisture (∆ TQC/∆ t ) in 
Fig. 3, it shows a predominantly positive feedback between 
these two variables. For Rbase, the positive feedback is 
rather weak with an average correlation coefficient of less 
than 0.1 over the entire model domain and almost no cor-
relation in the southern IP, MD coastal and SC mountains 
regions. In contrast, for Rdry, much higher correlation coeffi-
cients are found in EA, ME, the northern coast of IP, the AL 
mountains and the interior of the MD region. For Rlow and 

between variables identified through correlation analysis, 
while coupling refers to the one-way relationship inferred 
from the lagged scaling analyses. It is important to note, 
however, that the feedbacks identified here do not neces-
sarily imply causal directions. Thus, the term L-A interac-
tion is used more broadly to describe general processes at 
the interfaces between land and atmosphere without imply-
ing any direction, including both one-way and two-way 
relationships.

3  Results

3.1  Evapotranspiration-cloud water content 
correlation

To diagnose the strength of L-A feedbacks, we examine the 
relationship between surface and atmospheric variables. In 
this study, our focus is on the feedbacks between ET  and 
cloud water over the EURO-CORDEX domain under dif-
ferent atmospheric regimes. Figure 2 shows the strength of 
the feedback between daily ET  and TQC . A consistently 
negative correlation is observed over most of the study 

Fig. 2  Pearson correlation coefficient between daily total ET  and 
TQC  in summer (JJA) under different atmospheric conditions over 
the EURO-CORDEX region: (a) Baseline regime (Rbase); (b) dry 

regime (Rdry); (c) wet regime (Rwet); (d) low moisture dynamic regime 
(Rlow); (e) medium moisture dynamic regime (Rmedium); (f) high mois-
ture dynamic regime (Rhigh)
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is observed under both Rwet and Rhigh moisture dynamic 
regimes with a steeper declining slope, while the lowest 
sensitivity is under Rdry for all PRUDENCE regions. There 
is only a small difference between the curves under Rlow and 
Rmedium, but both have a steeper slope than the curves of Rdry.

In Fig.  5, the binned scaling curve analysis at 3-hour 
resolution per grid point also shows a clear positive scaling 
relationship between ET  and ∆ TQC/∆ t . However, it is 
subject to a certain range of ET  in all PRUDENCE regions 
and all atmospheric regimes or conditions. A consistently 
positive relationship can be observed when ET  is in the 
range of 0.2 to 0.7 mm/3h, while at high ET  rates greater 
than about 0.7 mm/3h, ∆ TQC/∆ t  tends to be insensitive 
to ET , showing a flat or even slightly decreasing curve. 
Interestingly, the scaling curves for the IP, AL, MD, and EA 
regions show a clear hook scaling behavior, i.e., ET  and 
∆ TQC/∆ t  are negatively scaled at low ET values. Under 
Rdry, this hook scaling relationship is more prevalent in most 
of the PRUDENCE regions except for BI. The two types of 
scaling curves are even more obvious to be observed from 
the scaling curves fitted at individual grid points as shown 
in Fig. S2. However, the spatially averaged scaling curve 
in Fig. 5 only represents the dominant type of scaling and 
there is a clear mixture of the two types of scaling curves in 

Rmedium, a widespread higher positive correlation between 
ET  and ∆ TQC/∆ t  can be detected in most PRUDENCE 
regions, but for high moisture dynamics, Rhigh, the correla-
tion coefficient values are significantly reduced to less than 
0.1, especially in regions along the Atlantic coast, which is 
strongly influenced by the oceanic inflow of moist air. The 
larger variation in correlation coefficients between different 
dynamical regimes hints that the effect of AMFD  on the 
ET -∆ TQC/∆ t  feedback is more pronounced than the 
impact of precipitation (Rdry vs. Rwet). A notable exception 
is the mountainous regions in SC, which consistently show 
a low correlation. This could be attributed to the low ET  
in those regions, even in summer, as the correlation-based 
metrics are only meaningful when ET  is relatively high 
(Seneviratne et al. 2006).

3.2  Evapotranspiration-cloud water content scaling

In Fig. 4, the 3-hourly binned scaling relationship between 
ET  and TQC  further confirms the negative relationship 
as shown by the decreasing scaling curves in all regimes, 
although the slopes of the scaling curves are rather small 
or even show a slight increase at low ET  in ME, SC, AL, 
MD, and EA. Also, a higher sensitivity of TQC  to ET  

Fig. 3  Same as Fig. 2 but for ET  and ∆ TQC/∆ t
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Fig. 5  The same as Fig. 4 but for ET  and ∆ TQC/∆ t  at each 3-hour interval. The red dashed line indicates zero ∆ TQC/∆ t . The shading 
represents the range between the 5% and 95% percentiles of the ∆ TQC/∆ t  at each line

 

Fig. 4  The mean binned scaling curves between 3-hourly total ET  
and 3-hourly instant TQC  under different atmospheric regimes for 
each PRUDENCE region from (a) to (h). Each line represents one type 
of atmospheric regime: Baseline regime (Rbase) (Black dashed line); 
Dry regime (Rdry) (Light blue line); Wet regime (Rwet) (Dark blue line); 

Low moisture dynamic regime (Rlow) (Purple line); Medium mois-
ture dynamic regime (Rmedium) (Orange line); High moisture dynamic 
regime (Rhigh) (Red line). The corresponding shading color represents 
the range between the 5% and 95% percentiles of the TQC  at each 
line
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located in southern Europe, especially in the Mediterranean 
coastal regions, including the eastern IP, MD, and southern 
EA regions. The logarithmic scaling appears preferentially 
in the Atlantic coastal regions, including western IP, FR, 
BI, SC, and ME. The spatial pattern is also consistent under 
either Rwet or different moisture flux dynamic regimes (Rlow, 
Rmedium, Rhigh). An exception is Rdry; here more grid points 
with hook scaling can be detected in SC, FR, ME and even 
BI. This can also be observed in Fig. 5 and Fig. S3 in the 
mean scaling curves for the IP, FR, ME, and SC regions, 
which all feature hook scaling.

3.3  Quantile phase diagnosis between 
evapotranspiration and AMFD

From Fig. 8, it is clear that from low to high ET  percen-
tiles, the increase in ∆ TQC/∆ t  consistently occurs under 
a higher moisture flux convergence condition (indicated by 
lower TDIV _HUM  percentile), while significant TQC  
depletion (negative ∆ TQC/∆ t ) is associated with a 
strong divergence (high TDIV _HUM  percentile), espe-
cially when ET is in the low percentile. Looking at the rela-
tionship between ET  and ∆ TQC/∆ t , it is interesting to 
observe two types of scaling relationships as in Fig. 6. The 
logarithmic scaling occurs under the condition of mois-
ture flux convergence. In contrast, hook scaling develops 
when the moisture flux diverges, and this type of scaling 
is most pronounced under Rdry. In the southern and east-
ern PRUDENCE regions (SC, AL, MD, and EA) a hook 
scaling can be observed under moisture flux divergence 
under Rwet, while as shown in Fig. S4, hook scaling can also 
be observed under Rlow, Rmedium,Rhigh in the SC, AL, MD, 
and EA regions when there is strong moisture flux diver-
gence. This indicates that although there is no clear effect 
of AMFD  strength on the spatial distribution of scaling 
clusters as shown in Fig. 7, the sign of moisture advection 

IP, MD, EA, and AL in Fig. S2 in SI, which can be further 
observed in Fig. 6.

Similar to the ET -TQC  scaling in Fig. 4, the slope of 
the scaling curves and the maximum ∆ TQC/∆ t  in Fig. 5 
are much smaller under Rdry than under Rwet. In contrast to 
the differences in the Rdry and Rwet, and the clear contrasts 
in the correlation coefficient values between the three mois-
ture dynamics regimes in Fig. 3, the variation in the shape 
and scale of the scaling curves between different moisture 
dynamics regimes in Fig. 5 is very small, and only in AL and 
SC, the ET -∆ TQC/∆ t  scaling converge to the maximum 
under Rlow under higher ET  Hence, dry or wet conditions 
are likely to be key factors in determining the type of scal-
ing curves. Furthermore, although ET  and ∆ TQC/∆ t  
are positively scaled, small ET  values are always associ-
ated with negative TQC  dynamics, namely an intensified 
decrease in cloud water. This indicates that at low ET , the 
positive coupling cannot ensure an increase in TQC  when 
ET  is growing, as other potential sources or sinks of cloud 
moisture can counteract the positive local moisture contri-
bution and lead to a depletion of TQC , which is further 
explained in the Discussions in Sect. 4.

We further applied the K-means clustering algorithm 
across all atmospheric regimes to classify the types of 
scaling curves at each grid point based on the shape of the 
scaling curves, which indicates the different responses of 
∆ TQC/∆ t  to changes in ET . As shown in Fig. 6 and Fig. 
S3, two dominant types of scaling curves have been con-
sistently identified over all the regimes. Cluster 1 (Fig. 6a) 
describes the relationship between ∆ TQC/∆ t  and ET  as 
a proxy for a logarithmic function, with a gradually reduced 
increasing trend, while cluster 2 (Fig.  6b) represents the 
hook scaling relationship, with a combination of negative 
scaling at low ET  and then logarithmic scaling. The spatial 
distribution of the two clusters has been visualized in Fig. 7 
and shows a clear north-south contrasting spatial pattern. 
Under Rbase, most of the grid points with hook scaling are 

Fig. 6  Two distinct clusters of 
3-hourly total ET  and normal-
ized ∆ TQC/∆ t  (unitless) 
scaling curves were calculated 
over allgrid points using K-means 
clustering algorithm. Here is an 
example of clustering under the 
Rwet regime. The ∆ TQC/∆ t  
has been normalized for conduct-
ing K-means clustering on time 
series. The thick red lines repre-
sent the averaged scaling curve 
in one cluster and the black solid 
lines represent the grid-scale fit-
ted scaling curves
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4  Discussion

4.1  Characteristics of ET and cloud water 
interaction

In this study, contrasting relationships were found between 
ET  and the dynamic term (∆ TQC/∆ t ) and storage term 
(TQC ) of cloud water at the 3-hourly time scale in TSMP 
RCSM model results. The direct effect of ET  is reflected in 
its positive contribution to the positive cloud water dynamics 
based on the scaling analysis. The positive scaling between 
ET  and ∆ TQC/∆ t  is similar to the well-known effect 
of latent heat nudging in data assimilation (Caldas-Alva-
rez and Khodayar 2020). The widespread negative scaling 
between ET  and TQC  over the EURO-CORDEX domain 
in Fig. 4 likely reflects a strong atmospheric control from 
net radiation that drives ET  through atmospheric evapora-
tive demand (Teuling et al. 2013). Under the Rdry or Rlow 
regimes, the total cloud fraction is generally lower, as well 
as less cloud water, resulting overall in less atmospheric 
control with a low sensitivity between ET  and TQC  (Berg 
et al. 2015; Tao et al. 2019; Vogel et al. 2018), as indicated 

can significantly change the scaling type between ET  and 
∆ TQC/∆ t  at the grid point scale.

Under both Rdry and Rwet, the strongest TQC depletion 
(-0.1 mm/3 h) tends to occur when ET  is lower than the 
30% percentile and moisture flux divergence is higher than 
the 60% percentile. The highest ∆ TQC/∆ t  occurs at high 
ET  and strong moisture flux convergence under Rwet. For 
the Rdry, the highest ∆ TQC/∆ t  occurs more frequently at 
the middle percentile of ET  between 30 and 60%. The co-
variability pattern of the ∆ TQC/∆ t  distribution agrees 
well under Rlow and Rmedium as shown in Fig. S4. Compared 
to Rdry, with Rwet, the areas show either a strong decrease 
or an increase of ∆ TQC/∆ t  both become much larger. 
For Rwet, the quantile phase plots between the PRUDENCE 
regions show a generally similar pattern, except for IP and 
AL, here the distribution of bins with high ∆ TQC/∆ t  is 
more scattered under all atmospheric conditions. This is 
also observed in the cluster map, as these two regions show 
a spatial mix of the two types of scaling curves.

Fig. 7  Spatial distribution of the two types of scaling curves over all atmospheric regimes over the EURO-CORDEX region
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to water-limited ET , typically in transitional or dry regions 
(Fischer et al. 2007; Knist et al. 2017; Koster et al. 2004; 
Miralles et al. 2012; Seneviratne et al. 2006). Although the 
ET -TQC  correlation analysis cannot directly demonstrate 
the directionality of coupling, its spatial pattern, analogous 
to the LH -SH  relationship, may indirectly suggest a simi-
lar mechanism. Specifically, a lower ET -TQC  correlation 

by a decrease in the correlation and a flatter curve of ET
-TQC  scaling in Figs. 2 and 4.

The spatial distribution of ET -TQC  correlation (Fig. 2) 
shows a similar pattern to LH-SH in Fig. S1, where a positive 
correlation of LH -SH  characterizes an energy-limited ET  
regime in humid regions and a negative correlation indicates 
a strong surface impact on the near-surface atmosphere due 

Fig. 8  Quantile phase plots of ∆ TQC/∆ t  as a function of the 
percentile of ET  and TDIV _HUM  (using 10 percentile bins). 
Here, A represents the Rdry and B represents the Rwet. Subplots from 
a) to h) represent each PRUDENCE region respectively. The color 
in each bin represents the value of ∆ TQC/∆ t  The strength of 

AMFD  is represented by the value of moisture flux divergence 
(TDIV _HUM ). A low percentile of TDIV _HUM  repre-
sents strong convergence, while a high percentile represents strong 
divergence. The red dashed line indicates the percentile with almost 
zero AMFD
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ET  are determined by the local ET  regime, i.e. the evapo-
rative fraction, as indicated by the similar distribution of 
LH -SH  correlation in Fig. S1.

Similarly, the surface energy partitioning or ET  regime 
defined by LH  and SH  has been used in previous studies 
to represent the L-A coupling strength (Knist et al. 2017). 
Their positive correlation indicates an energy-limited 
regime of ET  in humid regions and a negative correlation 
by a strong surface control on the near-surface atmosphere 
due to water-limited ET  in either transitional or dry regions, 
which further explains the distribution of the hooked scal-
ing curves in water-limited regions in southern and eastern 
Europe and the responses of ∆ TQC/∆ t  to ET  modulated 
by the local ET  regimes.

4.2  Effects of atmospheric aridity on ET and cloud 
water interaction

Many studies have discussed the effect of dry or wet soil 
on the L-A coupling from the perspective of the SM -Pr  
relationship; here convective precipitation initialization pre-
fers dry soil due to the stronger local coupling by thermally 
induced vertical circulations generated by dry soil (Baur et 
al. 2018; Chen et al. 2020; Phillips and Klein 2014; Welty 
and Zeng 2018).

In this study, the role of atmospheric aridity is highlighted 
in that it can both directly impact L-A coupling by control-
ling the incoming net radiation, and indirectly intensify the 
control of SM  on ET  through the terrestrial leg by chang-
ing surface dryness, and ultimately affect the entire coupling 
chain and hence precipitation (Wei and Dirmeyer 2010). 
As discussed in Sect.  4.1, the ET -∆ TQC/∆ t  curves 
are limited by both SM  and incoming radiation, based on 
the water- and energy-limited ET  regimes, so the scalings 
could also be affected by both direct and indirect effects of 
atmospheric aridity. In Fig. 7 (b) and (c), for example, when 
comparing Rwet and Rdry, the hooked scaling relationships 
can also be detected in more humid areas such as BI and SC, 
where relationships shift from an energy-limited to a water-
limited state due to the drying effect of the increased atmo-
spheric aridity on the land surface. While the atmosphere 
is wet enough under Rwet, the scaling relationships in these 
regions still follow the energy-limited logarithmic scaling. 
A decrease in the ET -TQC  correlation coefficient under 
Rdry also indirectly reflects the increased surface control on 
the atmosphere and reduced limitation by incoming energy. 
Similarly, an increase in the local L-A coupling strength 
between ET  and atmospheric variables was observed by 
Jach et al. 2022 and Schwitalla et al. 2023 in warm and dry 
summers in Europe.

Also, Dirmeyer et al. 2021 highlight the transition in 
ET  regimes with intensified L-A coupling during the 2018 

could imply a stronger local land surface impact on TQC  
(Seneviratne et al. 2010).

However, the spatial distribution of ET -∆ TQC/∆ t  
correlation is less consistent with the aforementioned analy-
sis with weak correlation in IP and western MD as in Fig. 3a. 
This may be attributed to the dry conditions in summer that 
limit the generation of ET  (Wei and Dirmeyer 2012), and 
the influence of the atmosphere is then more dominant than 
the local land surface states (Findell and Eltahir 2003b), 
despite of the water-limited strong coupling regime. Jach et 
al. 2020 classified the SM -Pr  coupling regimes in Europe 
using the convective triggering potential (CTP )-low‐level 
humidity index (HIlow) framework proposed by Findell and 
Eltahir (2003a) based on simulations. Northeastern and 
southeastern Europe are identified with the strongest land 
surface control on Pr  as the water-limited transitional 
region, while the coupling strength is rather weak in both 
energy-limited wet regions like the Atlantic coast in west 
SC and BI, or water-limited dry regions like IP, which 
are classified as “atmospheric control” regions (Jach et al. 
2020). Unlike the correlation relationship, the scaling rela-
tionships of ET -∆ TQC/∆ t  as shown in Fig. 5 are mostly 
modulated by the local ET  regimes while their coupling 
strength tends to be stronger in dry and transitional areas 
under the water-limited regimes (Seneviratne et al. 2010). 
In general, the relationship between ET  and cloud moisture 
could be a robust indicator of a L-A interaction diagnostic, 
because it can capture the spatial distribution pattern of L-A 
feedback as determined in previous studies in Europe (Knist 
et al. 2017; Jach et al. 2020).

In Fig.  7, it is also interesting to observe a clear hook 
scaling relationship as shown in Fig.  6 between ET  and 
∆ TQC/∆ t  in southern (IP, MD) or eastern Europe (EA), 
known as dry and transitional regions (Knist et al. 2017). 
One working hypothesis about the hook structure is that 
since ET  is under a water-limited regime in relatively dry 
regions, a very low ET  implies an arid land surface as well 
as dry atmospheric conditions. Given an intensified thermal 
condition due to increased SH  under low SM , a small 
increase in ET  can moisten the atmosphere through local 
coupling, destabilizing the boundary layer (Liu et al. 2024; 
Su et al. 2023; Su et al. 2024), leading to accelerated cloud 
water depletion due to enhanced convective rain, resulting 
in the negative relationship between ET -∆ TQC/∆ t  as a 
hook structure. However, when ET  further increases with 
SM , the ET  regime gradually shifts into an energy-limited 
condition so the PBL becomes more stable so that the local 
moisture flux from ET  cannot destabilize it. At the same 
time, the cloud water sink is compensated by the increased 
local moisture source from ET  and the scaling again shows 
a logarithmic relationship. Therefore, the two types of scal-
ing curves indicate that the responses to changes in TQC  to 
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L-A feedbacks (Phillips and Klein 2014; Wei and Dirmeyer 
2010). Tao et al. (2019) found that atmospheric moisture 
changes are more closely related to moisture flux conver-
gence in dry years, while Ford et al. (2015) and Qing et 
al. (2023) also argued that remote moisture sources play a 
more important role in precipitation event initialization in 
dry regions. These discrepancies could be explained by the 
choice of target variables (cloud water vs. Pr) and the sensi-
tivity of the time domain.

4.4  Limitations

While correlation analysis provides useful diagnostics for 
assessing the feedback between ET  and cloud water, it 
cannot fully capture the causal direction inherent in these 
feedback processes without considering any time lag. In our 
context, the direction can only be estimated indirectly when 
evaluated together with well-established causal relation-
ships, such as the LH -SH  relationship (Seneviratne et al. 
2010). The scaling analysis highlights a clear non-linearity 
between ET  and cloud water as shown by the scaling curves 
in Figs. 5 and 6, given their coupling at 3 h. This again calls 
into question the robustness of linear metrics such as Pear-
son correlation in quantifying the strength of non-linear 
relationships in L-A feedback analysis. Correlation analysis 
can roughly capture the covariance between two variables 
but rarely provide valuable information on the functional 
relationships, as shown by the two distinct types of scal-
ing relationships between ET  and ∆ TQC/∆ t . As L-A 
coupling is complex involving multiple variables and pro-
cesses at different stages, rather a directional and multivari-
ate method is required for a robust causality measurement, 
such as Peter-Clark Momentary Conditional Independence 
(PCMCI) algorithm or information theory methods (Krich 
et al. 2021; Hagan et al. 2022; Zhou et al. 2024).

Another limitation of the study is the problem of model 
dependence and its setup. The identified correlation and 
scaling relationships are highly dependent on the physics 
and parameterizations in the model. The use of an ensemble 
of RCMs could reduce the bias of the detected signal in any 
single model setup and increase the generalisability of the 
results. Furthermore, the observational dataset could be used 
as a reference for verification, as there are also discrepancies 
between observations and models for the mechanisms in 
cloud formation and the initialization of convective events 
by L-A feedback (Tao et al. 2021). Moreover, although.

TSMP closes the water and energy cycles from ground-
water across the land surface to the top of the atmosphere, 
interactions between the land surface and atmosphere 
induced by the model coupling timestep of 900ss might be 
underestimated by the 3-hour resolution output. Neverthe-
less, the proposed diagnosis framework demonstrates the 

drought and heatwave in northern Europe, for example, in 
SC, which normally does not enter into such conditions, 
and the risk of this shift in exacerbating heatwaves and 
droughts. This regime shift is expected to be more frequent 
in the future, especially under high-emission climate scenar-
ios. As a result, the proposed scaling analysis may serve as 
a valuable diagnostic tool in climate model projections. In 
this study, only total daily precipitation is however used to 
represent both SM  drying and atmospheric drying; but high 
atmospheric aridity, for example, is not always associated 
with low soil moisture (Zhang et al. 2023). Future studies 
should explore the individual and combined effects of SM 
and atmospheric aridity on L-A interactions, particularly in 
the context of compound hot-dry events.

4.3  Effects of AMFD on ET and cloud water 
interaction

This study also investigates the effect of AMFD  on L-A 
feedbacks. AMFD can reduce the strength of the positive 
feedback between ET -∆ TQC/∆ t , and alter the scaling 
between ET  and ∆ TQC/∆ t  by providing a remote mois-
ture source for cloud formation and changing the humid-
ity of the atmosphere. This effect is most pronounced in 
the Atlantic coastal regions, including BI, SC, ME, FR, 
and IP, which have been identified as regions with strong 
atmospheric impacts by moisture advection from the ocean 
(Jach et al. 2020). Strong moisture flux advection provides 
a more stable boundary layer condition with a lower con-
vective triggering potential so that surface moisture fluxes 
can hardly trigger cloud formation and precipitation events 
(Findell and Eltahir 2003b). Therefore, the relationship 
between surface moisture fluxes and atmospheric moisture 
becomes less strong. This could be the same mechanism 
behind the weak ET -∆ TQC/∆ t  coupling in this region. 
Moreover, the masking effect of AMFD  is less significant 
in Rdry, because the atmospheric moisture flux convergence 
is typically weaker than the divergence in the absence of 
precipitation so cloud water dynamics depend more on the 
local surface moisture flux than on remote moisture sources.

However, rather than looking at the absolute value of 
AMFD , its sign (convergence or divergence) can also 
contribute to the changes in atmospheric humidity and 
ultimately affect the scaling relationship between ET  and 
∆ TQC/∆ t  as shown in Fig.  8. For example, a strong 
divergence can contribute to a drier condition that favors 
a hook scaling between ET  and ∆ TQC/∆ t . However, 
their effects cannot be discerned from Fig.  5 because the 
scaling curves here are averaged over the AMFD  range, 
which only shows the dominant effect of convergence or 
divergence at each region. Nevertheless, the large-scale 
AMFD  dominates in most events, with overall small local 

1 3

10779



Y. Zhang et al.

JUWELS, both at Forschungszentrum Jülich (Jülich Supercomputing 
Centre, JSC).

Author contributions  Conceptualization: Y. Zhang, N. Wagner, K. 
Goergen, S. Kollet; methodology: Y. Zhang, N. Wagner, K. Goergen, 
S. Kollet; formal analysis and investigation: Y. Zhang, K. Goergen, S. 
Kollet; writing - original draft preparation: Y. Zhang; writing - review 
and editing: Y. Zhang, K. Goergen, S. Kollet; funding acquisition: S. 
Kollet; supervision: K. Goergen, S. Kollet. All authors read and ap-
proved the final manuscript.

Funding  Open Access funding enabled and organized by Projekt 
DEAL. This work has received funding from the Deutsche Forschun-
gsgemeinschaft (DFG, German Research Foundation) – DETECT 
project SFB 1502/1–2022 – project number: 450058266.

Data availability  The code for data pre-processing, statistical analysis, 
unsupervised learning, and visualization is available through GitHub. 
The dataset of TSMP-RCSM simulations is available as netCDF files 
and stored at a persistent data repository at Jülich Supercomputing 
Centre.

Declarations

Conflict of interest  The authors have no relevant financial or non-fi-
nancial interests to disclose.

Open Access   This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Allan RP, Barlow M, Byrne MP, Cherchi A, Douville H, Fowler 
HJ, Gan TY, Pendergrass AG, Rosenfeld D, Swann ALS, Wil-
cox LJ, Zolina O (2020) Advances in understanding large-scale 
responses of the water cycle to climate change. Ann N Y Acad Sci 
1472(1):49–75. https://doi.org/10.1111/nyas.14337

Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, and 
Thorsten Reinhardt (2011) Operational convective-scale Numeri-
cal Weather Prediction with the COSMO Model: description and 
sensitivities. Mon Weather Rev 139(12):3887–3905. https://doi.
org/10.1175/MWR-D-10-05013.1

Baur F, Keil C, Craig GC (2018) Soil moisture–precipitation coupling 
over Central Europe: interactions between Surface anomalies at 
different scales and the Dynamical Implication. Q J R Meteorol 
Soc 144(717):2863–2875. https://doi.org/10.1002/qj.3415

Bechtold P, Köhler M, Jung T, Doblas-Reyes F, Leutbecher M, 
Rodwell MJ, Vitart F, and Gianpaolo Balsamo (2008) Advances 
in simulating Atmospheric variability with the ECMWF Model: 
from synoptic to Decadal Time-Scales. Q J R Meteorol Soc 
134(634):1337–1351. https://doi.org/10.1002/qj.289

robustness of TSMP RCSM simulations in simulating L-A 
interactions.

5  Conclusions

In this study, we analyzed L-A moisture flux feedbacks under 
different atmospheric conditions in the warm season based 
on TSMP simulations using correlation and binned-average 
scaling analysis, focusing on the relationship between ET  
and cloud water.

We found contrasting relationships: A negative correla-
tion between ET -TQC  indicates ET  declines as the cloud 
moisture increases while the predominantly positive ET
-∆ TQC/∆ t scaling relationship highlights the role of sur-
face moisture flux in influencing cloud moisture dynamics. 
The role of the ET  regime in this feedback is also high-
lighted: the hotspots between ET  - TQC  feedback in 
Europe are mostly located in transitional zones in Eastern 
Europe and the Mediterranean, while the distribution of 
their scaling is determined by energy or water-limited ET  
regimes. Under Rdry, the shift of logarithmic scaling towards 
the hook scaling relationship in regions typically under an 
energy-limited regime indicates that a drier atmosphere can 
strengthen the local coupling by increasing the surface con-
trol on the atmosphere, while under Rwet there is a stron-
ger atmospheric control on the surface variables due to the 
incoming energy as a constraint. The identified shift further 
reflects the potential effect of L-A coupling in intensify-
ing hydrometeorological extreme events like droughts. In 
addition, AMFD  can reduce the strength of the positive 
feedback between ET -∆ TQC/∆ t  and affect their scal-
ing relationships by providing remote moisture sources and 
changing the dry/wet atmospheric conditions.

In summary, our results highlight the role of cloud water 
in the atmospheric part of the L-A interaction and reveal 
the impact of different atmospheric conditions on L-A 
interaction. The proposed scaling analysis framework also 
demonstrates its advantages in accounting for the varying 
relationship between land and atmospheric variables over 
the sub-daily period. The identified non-linear scaling rela-
tionship of L-A interaction shows the limitations of common 
indices in representing the co-varying pattern of two vari-
ables, which calls for new metrics and tools for diagnosis.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s00382-
024-07475-w.

Acknowledgements  The authors gratefully acknowledge: (i) The 
computing time granted by the JARA Vergabegremium and provided 
on the JARA Partition part of the supercomputer JURECA, and (ii) 
the Earth System Modelling Project (ESM) for funding this work by 
providing computing time on the ESM partition of the supercomputer 

1 3

10780

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/nyas.14337
https://doi.org/10.1175/MWR-D-10-05013.1
https://doi.org/10.1175/MWR-D-10-05013.1
https://doi.org/10.1002/qj.3415
https://doi.org/10.1002/qj.289
https://doi.org/10.1007/s00382-024-07475-w
https://doi.org/10.1007/s00382-024-07475-w


Summer evapotranspiration-cloud feedbacks in land-atmosphere interactions over Europe

Summer Heat Wave. J Clim 20(20):5081–5099. https://doi.
org/10.1175/JCLI4288.1

Ford TW, Anita D, Rapp, Quiring SM (2015) Does Afternoon Pre-
cipitation Occur preferentially over dry or wet soils in Okla-
homa? J Hydrometeorol 16(2):874–888. https://doi.org/10.1175/
JHM-D-14-0005.1

Furusho-Percot C, Goergen K, Hartick C, Kulkarni K, Keune J, 
and Stefan Kollet (2019) Pan-european Groundwater to Atmo-
sphere Terrestrial systems Climatology from a physically con-
sistent Simulation. Sci Data 6(1):320. https://doi.org/10.1038/
s41597-019-0328-7

Furusho-Percot C, Goergen K, Hartick C, Poshyvailo-Strube L, Kol-
let S (2022) Groundwater Model impacts Multiannual simu-
lations of Heat waves. Geophys Res Lett 49(10). https://doi.
org/10.1029/2021GL096781. e2021GL096781

Gasper F, Goergen K, Shrestha P, Sulis M, Rihani J, Geimer M, Kollet 
S (2014) Implementation and scaling of the fully coupled Ter-
restrial systems modeling platform (TerrSysMP v1.0) in a mas-
sively parallel supercomputing environment – a case study on 
JUQUEEN (IBM Blue Gene/Q). Geosci Model Dev 7(5):2531–
2543. https://doi.org/10.5194/gmd-7-2531-2014

Hagan DFT, Han AJ, Dolman G, Wang, Kenny TC, Lim Kam Sian K, 
Yang W, Ullah, Shen R (2022) Contrasting ecosystem constraints 
on Seasonal Terrestrial CO2 and Mean Surface Air Temperature 
Causality projections by the end of the 21st Century. Environ Res 
Lett 17(12):124019. https://doi.org/10.1088/1748-9326/aca551

Hersbach H, Bell B, Berrisford P, Hirahara S et al (2020) András 
Horányi, Joaquín Muñoz-Sabater, Julien Nicolas,. The ERA5 
Global Reanalysis. Q J R Meteorol Soc 146(730):1999–2049. 
https://doi.org/10.1002/qj.3803

Jach L, Warrach-Sagi K, Ingwersen J, Kaas E, and Volker Wul-
fmeyer (2020) Land Cover impacts on Land-Atmosphere 
Coupling Strength in Climate simulations with WRF over 
Europe. J Geophys Research: Atmos 125(18). https://doi.
org/10.1029/2019JD031989. e2019JD031989

Jach L, Schwitalla T, Branch O, Warrach-Sagi K, and Volker Wulf-
meyer (2022) Sensitivity of land–atmosphere coupling strength 
to changing Atmospheric temperature and moisture over 
Europe. Earth Sys Dyn 13(1):109–132. https://doi.org/10.5194/
esd-13-109-2022

Jones JE, Woodward CS (2001) Newton–Krylov-Multigrid solvers for 
Large-Scale, highly heterogeneous, variably saturated Flow prob-
lems. Adv Water Resour 24(7):763–774. https://doi.org/10.1016/
S0309-1708(00)00075-0

Knist S, Goergen K, Buonomo E, Bøssing O, Christensen A, Colette 
RM, Cardoso R, Fealy et al (2017) Land-Atmosphere Coupling in 
EURO-CORDEX evaluation experiments. J Geophys Research: 
Atmos 122(1):79–103. https://doi.org/10.1002/2016JD025476

Kollet SJ, and Reed M. Maxwell (2006) Integrated Surface–Groundwa-
ter Flow modeling: a free-surface Overland Flow Boundary Con-
dition in a parallel Groundwater Flow Model. Adv Water Resour 
29(7):945–958. https://doi.org/10.1016/j.advwatres.2005.08.006

Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon 
CT et al (2004) Regions of strong coupling between soil mois-
ture and precipitation. Science 305(5687):1138–1140. https://doi.
org/10.1126/science.1100217

Kotthaus S, Sue C, Grimmond B (2018) Atmospheric Boundary-Layer 
characteristics from Ceilometer measurements. Part 1: a new 
method to track mixed Layer Height and Classify clouds. Q J 
R Meteorol Soc 144(714):1525–1538. https://doi.org/10.1002/
qj.3299

Krich C, Migliavacca M, Miralles DG, Kraemer G, Tarek S, El-
Madany M, Reichstein J, Runge, and Miguel D. Mahecha (2021) 
Functional convergence of biosphere–atmosphere interac-
tions in response to Meteorological conditions. Biogeosciences 
18(7):2379–2404. https://doi.org/10.5194/bg-18-2379-2021

Berg A, Lintner BR, Findell K, Seneviratne SI, Bart, van den Hurk 
Chéruy F, et al (2015) Interannual Coupling between Summer-
time Surface Temperature and Precipitation over Land: Processes 
and Implications for Climate Change. J Climate 28(3):1308–28. 
https://doi.org/10.1175/JCLI-D-14-00324.1

Berg A, Lintner BR, Findell K, and Alessandra Giannini (2017) 
Uncertain Soil Moisture feedbacks in Model projections of Sahel 
Precipitation. Geophys Res Lett 44(12):6124–6133. https://doi.
org/10.1002/2017GL073851

Betts AK, Desjardins R, Beljaars ACM, and Ahmed Tawfik (2015) 
Observational study of Land-Surface-Cloud-Atmosphere Cou-
pling on Daily timescales. Front Earth Sci 3. https://www.fron-
tiersin.org/articles/10.3389/feart.2015.00013

Caldas-Alvarez A, and Samiro Khodayar (2020) Assessing Atmo-
spheric Moisture effects on Heavy Precipitation during HyMeX 
IOP16 using GPS nudging and dynamical downscaling. Nat Haz-
ards Earth Syst Sci 20(10):2753–2776. https://doi.org/10.5194/
nhess-20-2753-2020

Chen J, Hagos S, Xiao H, Fast JD, and Zhe Feng (2020) Character-
ization of Surface Heterogeneity-Induced Convection using clus-
ter analysis. J Geophys Research: Atmos 125(20). https://doi.
org/10.1029/2020JD032550. e2020JD032550

Christensen J, Hesselbjerg, Ole Bøssing C (2007) A Summary of the 
PRUDENCE model projections of changes in European climate 
by the end of this century. Clim Change 81(1):7–30. https://doi.
org/10.1007/s10584-006-9210-7

Dirmeyer PA (2011) The terrestrial segment of Soil moisture–
climate coupling. Geophys Res Lett 38(16). https://doi.
org/10.1029/2011GL048268

Dirmeyer PA, Jin Y, Singh B, and Xiaoqin Yan (2013a) Evolving 
land–atmosphere interactions over North America from CMIP5 
simulations. J Clim 26(19):7313–7327. https://doi.org/10.1175/
JCLI-D-12-00454.1

Dirmeyer PA, Jin Y, Singh B, and Xiaoqin Yan (2013b) Trends in land–
atmosphere interactions from CMIP5 simulations. J Hydrometeo-
rol 14(3):829–849. https://doi.org/10.1175/JHM-D-12-0107.1

Dirmeyer PA, Balsamo G, Blyth EM, Morrison R (2021) and Hol-
lie M. Cooper. Land-Atmosphere Interactions Exacerbated the 
Drought and Heatwave Over Northern Europe During Sum-
mer 2018. AGU Advances 2 (2): e2020AV000283. https://doi.
org/10.1029/2020AV000283

Dominguez F, and Praveen Kumar (2008) Precipitation recycling vari-
ability and Ecoclimatological Stability—A Study using NARR 
Data. Part I: Central U.S. Plains Ecoregion. J Clim 21(20):5165–
5186. https://doi.org/10.1175/2008JCLI1756.1

Doms G, Schattler U n.d. A Description of the Nonhydrostatic 
Regional Model LM

Doms G, Förstner J, Heise E, Reinhardt T, Ritter B, Schrodin R n.d. 
A Description of the Nonhydrostatic Regional COSMO-Model

Findell KL, Elfatih AB, Eltahir (2003a) Atmospheric controls on 
Soil moisture–boundary layer interactions. Part I: Framework 
Development. J Hydrometeorol 4(3):552–569. https://doi.
org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2

Findell KL, Elfatih AB, Eltahir (2003b) Atmospheric controls on Soil 
moisture–boundary layer interactions. Part II: feedbacks within 
the Continental United States. J Hydrometeorol 4(3):570–583. 
https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>
2.0.CO;2

Findell KL, Yin Z, Seo E, Dirmeyer PA, Arnold NP, Chaney N, Fowler 
MD et al (2024) Accurate Assessment of Land–Atmosphere Cou-
pling in Climate models requires high-frequency data output. 
Geosci Model Dev 17(4):1869–1883. https://doi.org/10.5194/
gmd-17-1869-2024

Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil 
moisture–atmosphere interactions during the 2003 European 

1 3

10781

https://doi.org/10.1175/JCLI4288.1
https://doi.org/10.1175/JCLI4288.1
https://doi.org/10.1175/JHM-D-14-0005.1
https://doi.org/10.1175/JHM-D-14-0005.1
https://doi.org/10.1038/s41597-019-0328-7
https://doi.org/10.1038/s41597-019-0328-7
https://doi.org/10.1029/2021GL096781
https://doi.org/10.1029/2021GL096781
https://doi.org/10.5194/gmd-7-2531-2014
https://doi.org/10.1088/1748-9326/aca551
https://doi.org/10.1002/qj.3803
https://doi.org/10.1029/2019JD031989
https://doi.org/10.1029/2019JD031989
https://doi.org/10.5194/esd-13-109-2022
https://doi.org/10.5194/esd-13-109-2022
https://doi.org/10.1016/S0309-1708(00)00075-0
https://doi.org/10.1016/S0309-1708(00)00075-0
https://doi.org/10.1002/2016JD025476
https://doi.org/10.1016/j.advwatres.2005.08.006
https://doi.org/10.1126/science.1100217
https://doi.org/10.1126/science.1100217
https://doi.org/10.1002/qj.3299
https://doi.org/10.1002/qj.3299
https://doi.org/10.5194/bg-18-2379-2021
https://doi.org/10.1175/JCLI-D-14-00324.1
https://doi.org/10.1002/2017GL073851
https://doi.org/10.1002/2017GL073851
https://www.frontiersin.org/articles/10.3389/feart.2015.00013
https://www.frontiersin.org/articles/10.3389/feart.2015.00013
https://doi.org/10.5194/nhess-20-2753-2020
https://doi.org/10.5194/nhess-20-2753-2020
https://doi.org/10.1029/2020JD032550
https://doi.org/10.1029/2020JD032550
https://doi.org/10.1007/s10584-006-9210-7
https://doi.org/10.1007/s10584-006-9210-7
https://doi.org/10.1029/2011GL048268
https://doi.org/10.1029/2011GL048268
https://doi.org/10.1175/JCLI-D-12-00454.1
https://doi.org/10.1175/JCLI-D-12-00454.1
https://doi.org/10.1175/JHM-D-12-0107.1
https://doi.org/10.1029/2020AV000283
https://doi.org/10.1029/2020AV000283
https://doi.org/10.1175/2008JCLI1756.1
https://doi.org/10.5194/gmd-17-1869-2024
https://doi.org/10.5194/gmd-17-1869-2024


Y. Zhang et al.

is it related to large-Scale Atmospheric conditions? Geophys Res 
Lett 41(4):1283–1289. https://doi.org/10.1002/2013GL058931

Su T, Li Z, Zhang Y, Zheng Y, Zhang H (2024) Observation and 
Reanalysis Derived relationships between Cloud and Land Sur-
face fluxes Across Cumulus and Stratiform Coupling over the 
Southern Great Plains. Geophys Res Lett 51(8). https://doi.
org/10.1029/2023GL108090. e2023GL108090

Tao C, Zhang Y, Tang S, Tang Q, Ma H-Y, Xie S, and Minghua Zhang 
(2019) Regional Moisture Budget and Land-Atmosphere Cou-
pling over the U.S. Southern Great Plains inferred from the ARM 
Long-Term observations. J Geophys Research: Atmos 124(17–
18):10091–10108. https://doi.org/10.1029/2019JD030585

Tao C, Zhang Y, Tang Q, Ma H-Y, Ghate VP, Tang S, Xie S, Santa-
nello JA (2021) Land–atmosphere coupling at the U.S. Southern 
Great Plains: a comparison on local convective regimes between 
ARM observations, reanalysis, and Climate Model simula-
tions. J Hydrometeorol 22(2):463–481. https://doi.org/10.1175/
JHM-D-20-0078.1

Taylor C, de Jeu R, Guichard F et al (2012) Afternoon rain more likely 
over drier soils. Nature 489:423–426. https://doi.org/10.1038/
nature11377

Tesch T, Kollet S, and Jochen Garcke (2023) Causal deep learn-
ing models for studying the Earth System. Geosci Model Dev 
16(8):2149–2166. https://doi.org/10.5194/gmd-16-2149-2023

Teuling AJ, Anne F, Van Loon SI, Seneviratne I, Lehner M, Aubi-
net B, Heinesch C, Bernhofer T, Grünwald H, Prasse, Spank U 
(2013) Evapotranspiration amplifies European Summer Drought. 
Geophys Res Lett 40(10):2071–2075. https://doi.org/10.1002/
grl.50495

Tian J, Zhang Y, Klein SA, Öktem R, Wang L (2022) How does Land 
Cover and its heterogeneity length scales affect the formation of 
summertime shallow Cumulus clouds in observations from the 
US Southern Great Plains? Geophys Res Lett 49(7). https://doi.
org/10.1029/2021GL097070. e2021GL097070

Tiedtke M (1989) A Comprehensive Mass Flux Scheme for Cumu-
lus parameterization in large-scale models. August. https://
journals.ametsoc.org/view/journals/mwre/117/8/1520-
0493_1989_117_1779_acmfsf_2_0_co_2.xml

Valcke S (2013) The OASIS3 coupler: a European Climate Modelling 
Community Software. Geosci Model Dev 6(2):373–388. https://
doi.org/10.5194/gmd-6-373-2013

Vogel MM, Zscheischler J, Sonia I, Seneviratne (2018) Varying soil 
moisture–atmosphere feedbacks explain divergent tempera-
ture extremes and precipitation projections in Central Europe. 
Earth Sys Dyn 9(3):1107–1125. https://doi.org/10.5194/
esd-9-1107-2018

Wang Y, Li R, Hu J, Fu Y, Duan J, Cheng Y, and Binbin Song (2021) 
Understanding the non-linear response of summer evapotranspi-
ration to clouds in a Temperate Forest under the impact of Vegeta-
tion Water Content. J Geophys Research: Atmos 126(23). https://
doi.org/10.1029/2021JD035239. e2021JD035239

Wang Y, Li R, Song B, and Jiheng Hu (2024) Divergent responses 
of summer terrestrial evapotranspiration to Cloud increase 
in East Asia. J Geophys Research: Atmos 129(6). https://doi.
org/10.1029/2023JD039246. e2023JD039246

Wei J, Dirmeyer PA (2010) Toward understanding the large-Scale Land-
Atmosphere Coupling in the models: roles of different processes. 
Geophys Res Lett 37(19). https://doi.org/10.1029/2010GL044769

Wei J, Dirmeyer PA (2012) Dissecting soil moisture-precip-
itation coupling. Geophys Res Lett 39(19). https://doi.
org/10.1029/2012GL053038

Welty J, Zeng X (2018) Does Soil Moisture affect warm season pre-
cipitation over the Southern Great Plains? Geophys Res Lett 
45(15):7866–7873. https://doi.org/10.1029/2018GL078598

Zängl Günther, Reinert D, Rípodas P, and Michael Baldauf (2015) The 
ICON (ICOsahedral Non-hydrostatic) Modelling Framework of 

Liu X, He B, Guo L, Huang L, Chen D (2020) Similarities and dif-
ferences in the mechanisms causing the European summer heat-
waves in 2003, 2010, and 2018. Earth’s Future 8(4). https://doi.
org/10.1029/2019EF001386. e2019EF001386

Liu W, Yue P, Wu X, Li J, Shao N, Zhu B (2024) and Chunsong Lu. 
Why Does a Decrease in Cloud Amount Increase Terrestrial 
Evapotranspiration in a Monsoon Transition Zone? Environmen-
tal Research Letters, March. https://doi.org/10.1088/1748-9326/
ad3569

Maxwell RM (2013) A terrain-following Grid transform and precondi-
tioner for parallel, Large-Scale, Integrated Hydrologic modeling. 
Adv Water Resour 53(March):109–117. https://doi.org/10.1016/j.
advwatres.2012.10.001

Miralles DG, van den Berg MJ, Teuling AJ, de a. R (2012) Jeu. 
Soil Moisture-Temperature Coupling: A Multiscale Obser-
vational Analysis. Geophys Res Lett 39(21). https://doi.
org/10.1029/2012GL053703

Oleson KW, Niu G-Y, Yang Z-L, Lawrence DM, Thornton PE, Law-
rence PJ, Stöckli R et al (2008) Improvements to the Commu-
nity Land Model and their impact on the Hydrological cycle. 
J Geophys Research: Biogeosciences 113(G1). https://doi.
org/10.1029/2007JG000563

Phillips TJ, Klein SA (2014) Land-Atmosphere Coupling mani-
fested in warm-season observations on the U.S. Southern Great 
Plains. J Geophys Research: Atmos 119(2):509–528. https://doi.
org/10.1002/2013JD020492

Qing Y, Wang S, Yang Z-L, and Pierre Gentine (2023) Soil mois-
ture – atmosphere Feedbacks have triggered the shifts from 
Drought to Pluvial conditions since 1980. Commun Earth Envi-
ron 4(1):1–10. https://doi.org/10.1038/s43247-023-00922-2

Santanello JA, Christa D, Peters-Lidard, Kumar SV (2011) Diagnos-
ing the sensitivity of local land–atmosphere Coupling via the 
Soil moisture–boundary Layer Interaction. J Hydrometeorol 
12(5):766–786. https://doi.org/10.1175/JHM-D-10-05014.1

Santanello JA, Dirmeyer PA, Ferguson CR, Findell KL, Tawfik AB, 
Berg A, Ek M et al (2018) Land–atmosphere interactions: the 
LoCo Perspective. Bull Am Meteorol Soc 99(6):1253–1272. 
https://doi.org/10.1175/BAMS-D-17-0001.1

Schwitalla T, Jach L, Wulfmeyer V (2023) and Kirsten Warrach-
Sagi. Soil Moisture-Atmosphere Coupling Strength over 
Central Europe in the Recent Warming Climate. Preprint. Atmo-
spheric, Meteorological and Climatological Hazards. https://doi.
org/10.5194/egusphere-2023-1725

Sedlar J, Riihimaki LD, Turner DD, Duncan J, Adler B, Bianco L, 
Lantz K et al (2022) Investigating the impacts of Daytime Bound-
ary Layer clouds on Surface Energy fluxes and Boundary Layer 
structure during CHEESEHEAD19. J Geophys Research: Atmos 
127(5). https://doi.org/10.1029/2021JD036060. e2021JD036060

Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere 
Coupling and Climate Change in Europe. Nature 443(7108):205–
209. https://doi.org/10.1038/nature05095

Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, 
Orlowsky B, Adriaan JT (2010) Investigating soil moisture–cli-
mate interactions in a changing climate: a review. Earth Sci Rev 
99(3):125–161. https://doi.org/10.1016/j.earscirev.2010.02.004

Shrestha P, Sulis M, Masbou M, Kollet S, Simmer C (2014) A scale-
consistent Terrestrial systems modeling platform based on 
COSMO, CLM, and ParFlow. Mon Weather Rev 142(9):3466–
3483. https://doi.org/10.1175/MWR-D-14-00029.1

Su T, Li Z, and Youtong Zheng (2023) Cloud-surface coupling alters 
the morning transition from stable to unstable boundary layer. 
Geophys Res Lett 50(5). https://doi.org/10.1029/2022GL102256. 
e2022GL102256

Su H, Yang Z-L, Dickinson RE, and Jiangfeng Wei (2014) Spring Soil 
moisture-precipitation feedback in the Southern Great Plains: how 

1 3

10782

https://doi.org/10.1002/2013GL058931
https://doi.org/10.1029/2023GL108090
https://doi.org/10.1029/2023GL108090
https://doi.org/10.1029/2019JD030585
https://doi.org/10.1175/JHM-D-20-0078.1
https://doi.org/10.1175/JHM-D-20-0078.1
https://doi.org/10.1038/nature11377
https://doi.org/10.1038/nature11377
https://doi.org/10.5194/gmd-16-2149-2023
https://doi.org/10.1002/grl.50495
https://doi.org/10.1002/grl.50495
https://doi.org/10.1029/2021GL097070
https://doi.org/10.1029/2021GL097070
https://journals.ametsoc.org/view/journals/mwre/117/8/1520-0493_1989_117_1779_acmfsf_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/117/8/1520-0493_1989_117_1779_acmfsf_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/117/8/1520-0493_1989_117_1779_acmfsf_2_0_co_2.xml
https://doi.org/10.5194/gmd-6-373-2013
https://doi.org/10.5194/gmd-6-373-2013
https://doi.org/10.5194/esd-9-1107-2018
https://doi.org/10.5194/esd-9-1107-2018
https://doi.org/10.1029/2021JD035239
https://doi.org/10.1029/2021JD035239
https://doi.org/10.1029/2023JD039246
https://doi.org/10.1029/2023JD039246
https://doi.org/10.1029/2010GL044769
https://doi.org/10.1029/2012GL053038
https://doi.org/10.1029/2012GL053038
https://doi.org/10.1029/2018GL078598
https://doi.org/10.1029/2019EF001386
https://doi.org/10.1029/2019EF001386
https://doi.org/10.1088/1748-9326/ad3569
https://doi.org/10.1088/1748-9326/ad3569
https://doi.org/10.1016/j.advwatres.2012.10.001
https://doi.org/10.1016/j.advwatres.2012.10.001
https://doi.org/10.1029/2012GL053703
https://doi.org/10.1029/2012GL053703
https://doi.org/10.1029/2007JG000563
https://doi.org/10.1029/2007JG000563
https://doi.org/10.1002/2013JD020492
https://doi.org/10.1002/2013JD020492
https://doi.org/10.1038/s43247-023-00922-2
https://doi.org/10.1175/JHM-D-10-05014.1
https://doi.org/10.1175/BAMS-D-17-0001.1
https://doi.org/10.5194/egusphere-2023-1725
https://doi.org/10.5194/egusphere-2023-1725
https://doi.org/10.1029/2021JD036060
https://doi.org/10.1038/nature05095
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1175/MWR-D-14-00029.1
https://doi.org/10.1029/2022GL102256


Summer evapotranspiration-cloud feedbacks in land-atmosphere interactions over Europe

in a Multi-Variate Causality for Land-Atmosphere Interactions. J 
Climate 1 (aop). https://doi.org/10.1175/JCLI-D-23-0207.1

Zhou S, Williams AP, Lintner BR et al (2021) Soil moisture–atmo-
sphere feedbacks mitigate declining water availability in dry-
lands. Nat Clim Chang 11:38–44. https://doi.org/10.1038/
s41558-020-00945-z

Publisher’s note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations. 

DWD and MPI-M: description of the non-hydrostatic dynami-
cal core. Q J R Meteorol Soc 141(687):563–579. https://doi.
org/10.1002/qj.2378

Zhang W, Koch J, Wei F, Zeng Z, Fang Z, and Rasmus Fensholt (2023) 
Soil Moisture and Atmospheric Aridity Impact Spatio-temporal 
changes in Evapotranspiration at A Global Scale. J Geophys 
Research: Atmos 128(8). https://doi.org/10.1029/2022JD038046. 
e2022JD038046

Zhou F, Hagan DFT, Wang G, San Liang X, Li S, Shao Y, Yeboah 
E (2024) and Xikun Wei. Estimating Time-Dependent Structures 

1 3

10783

https://doi.org/10.1175/JCLI-D-23-0207.1
https://doi.org/10.1038/s41558-020-00945-z
https://doi.org/10.1038/s41558-020-00945-z
https://doi.org/10.1002/qj.2378
https://doi.org/10.1002/qj.2378
https://doi.org/10.1029/2022JD038046

	﻿Summer evapotranspiration-cloud feedbacks in land-atmosphere interactions over Europe
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Methodology
	﻿2.1﻿ ﻿Simulation data and study area
	﻿﻿2.2﻿ ﻿﻿Moisture balance of the cloud layer in COSMO model﻿
	﻿2.3﻿ ﻿Classification of atmospheric regimes
	﻿2.4﻿ ﻿Analysis methods

	﻿3﻿ ﻿Results
	﻿3.1﻿ ﻿Evapotranspiration-cloud water content correlation
	﻿3.2﻿ ﻿Evapotranspiration-cloud water content scaling
	﻿3.3﻿ ﻿Quantile phase diagnosis between evapotranspiration and AMFD

	﻿﻿4﻿ ﻿Discussion
	﻿﻿4.1﻿ ﻿Characteristics of ET and cloud water interaction
	﻿4.2﻿ ﻿Effects of atmospheric aridity on ET and cloud water interaction
	﻿4.3﻿ ﻿Effects of AMFD on ET and cloud water interaction
	﻿4.4﻿ ﻿Limitations

	﻿5﻿ ﻿Conclusions
	﻿References


