001032107 001__ 1032107
001032107 005__ 20250226092423.0
001032107 0247_ $$2ISSN$$a0261-4189
001032107 0247_ $$2ISSN$$a1460-2075
001032107 037__ $$aFZJ-2024-06005
001032107 082__ $$a570
001032107 1001_ $$00009-0000-1371-553X$$aDmitrieva, Natalia$$b0
001032107 245__ $$aTransport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters
001032107 260__ $$aHoboken, NJ [u.a.]$$bWiley$$c2024
001032107 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1737998735_9346
001032107 3367_ $$2ORCID$$aWORKING_PAPER
001032107 3367_ $$028$$2EndNote$$aElectronic Article
001032107 3367_ $$2DRIVER$$apreprint
001032107 3367_ $$2BibTeX$$aARTICLE
001032107 3367_ $$2DataCite$$aOutput Types/Working Paper
001032107 500__ $$aWe thank Drs Andre Bazzone, Bassam Haddad, Andrei Kostritskii, PiersilvioLongo and Jan-Philipp Machtens for helpful discussions and Meike Berndt forexcellent technical support. This work was supported by the DeutscheForschungsgemeinschaft (German Research Foundation) to ChF (FA 301/15–2), PC (CA 973/27-2) and MAP (AL 2511/1-2) as part of Research Unit FOR2518, DynIon. The authors gratefully acknowledge computing time on the supercomputer JURECA at Forschungszentrum Jülich under grants dgoth and vglut-pt.Open Access article as part of the DEAL agreement with Wiley.
001032107 520__ $$aThe solute carrier 17 (SLC17) family contains anion transportersthat accumulate neurotransmitters in secretory vesicles, removecarboxylated monosaccharides from lysosomes, or extrude organicanions from the kidneys and liver.We combined classical moleculardynamics simulations, Markov state modeling and hybrid firstprinciples quantum mechanical/classical mechanical (QM/MM)simulations with experimental approaches to describe the transportmechanisms of a model bacterial protein, the D-galactonatetransporter DgoT, at atomic resolution. We found that protonationof D46 and E133 precedes galactonate binding and that substratebinding induces closure of the extracellular gate, with the conservedR47 coupling substrate binding to transmembrane helixmovement. After isomerization to an inward-facing conformation,deprotonation of E133 and subsequent proton transfer from D46 toE133 opens the intracellular gate and permits galactonate dissociationeither in its unprotonated form or after proton transferfrom E133. After release of the second proton, apo DgoT returns tothe outward-facing conformation. Our results provide a frameworkto understand how various SLC17 transport functions with distincttransport stoichiometries can be attained through subtle variationsin proton and substrate binding/unbinding.
001032107 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001032107 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001032107 536__ $$0G:(GEPRIS)426950122$$aDFG project G:(GEPRIS)426950122 - FOR 5046: Integrative Analyse epithelialer SLC26 Anionentransporter – von der molekularen Struktur zur Pathophysiologie (426950122)$$c426950122$$x2
001032107 536__ $$0G:(GEPRIS)291198853$$aDFG project G:(GEPRIS)291198853 - FOR 2518: Funktionale Dynamik von Ionenkanälen und Transportern - DynIon - (291198853)$$c291198853$$x3
001032107 536__ $$0G:(GEPRIS)329460521$$aDFG project G:(GEPRIS)329460521 - Protonentransfer und Substraterkennung in SLC17-Transportern (329460521)$$c329460521$$x4
001032107 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001032107 7001_ $$0P:(DE-Juel1)191566$$aGholami, Samira$$b1$$ufzj
001032107 7001_ $$0P:(DE-Juel1)165847$$aAlleva, Claudia$$b2
001032107 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b3
001032107 7001_ $$0P:(DE-Juel1)169976$$aAlfonso-Prieto, Mercedes$$b4$$eCorresponding author
001032107 7001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b5$$eCorresponding author
001032107 909CO $$ooai:juser.fz-juelich.de:1032107$$pVDB
001032107 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-24$$wger
001032107 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
001032107 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
001032107 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
001032107 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-30
001032107 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-30
001032107 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-08T07:44:01Z
001032107 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-08T07:44:01Z
001032107 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review, Double anonymous peer review$$d2024-04-08T07:44:01Z
001032107 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-30
001032107 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-30
001032107 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-30
001032107 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-30
001032107 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEMBO J : 2022$$d2024-12-30
001032107 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-30
001032107 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-30
001032107 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEMBO J : 2022$$d2024-12-30
001032107 9141_ $$y2024
001032107 9101_ $$0I:(DE-588b)5008462-8$$60009-0000-1371-553X$$aForschungszentrum Jülich$$b0$$kFZJ
001032107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191566$$aForschungszentrum Jülich$$b1$$kFZJ
001032107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b3$$kFZJ
001032107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169976$$aForschungszentrum Jülich$$b4$$kFZJ
001032107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich$$b5$$kFZJ
001032107 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001032107 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001032107 920__ $$lyes
001032107 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
001032107 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
001032107 980__ $$apreprint
001032107 980__ $$aVDB
001032107 980__ $$aI:(DE-Juel1)IBI-1-20200312
001032107 980__ $$aI:(DE-Juel1)INM-9-20140121
001032107 980__ $$aUNRESTRICTED