Home > Publications database > Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters > print |
001 | 1032107 | ||
005 | 20250226092423.0 | ||
024 | 7 | _ | |2 ISSN |a 0261-4189 |
024 | 7 | _ | |2 ISSN |a 1460-2075 |
037 | _ | _ | |a FZJ-2024-06005 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |0 0009-0000-1371-553X |a Dmitrieva, Natalia |b 0 |
245 | _ | _ | |a Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters |
260 | _ | _ | |a Hoboken, NJ [u.a.] |b Wiley |c 2024 |
336 | 7 | _ | |0 PUB:(DE-HGF)25 |2 PUB:(DE-HGF) |a Preprint |b preprint |m preprint |s 1737998735_9346 |
336 | 7 | _ | |2 ORCID |a WORKING_PAPER |
336 | 7 | _ | |0 28 |2 EndNote |a Electronic Article |
336 | 7 | _ | |2 DRIVER |a preprint |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 DataCite |a Output Types/Working Paper |
500 | _ | _ | |a We thank Drs Andre Bazzone, Bassam Haddad, Andrei Kostritskii, PiersilvioLongo and Jan-Philipp Machtens for helpful discussions and Meike Berndt forexcellent technical support. This work was supported by the DeutscheForschungsgemeinschaft (German Research Foundation) to ChF (FA 301/15–2), PC (CA 973/27-2) and MAP (AL 2511/1-2) as part of Research Unit FOR2518, DynIon. The authors gratefully acknowledge computing time on the supercomputer JURECA at Forschungszentrum Jülich under grants dgoth and vglut-pt.Open Access article as part of the DEAL agreement with Wiley. |
520 | _ | _ | |a The solute carrier 17 (SLC17) family contains anion transportersthat accumulate neurotransmitters in secretory vesicles, removecarboxylated monosaccharides from lysosomes, or extrude organicanions from the kidneys and liver.We combined classical moleculardynamics simulations, Markov state modeling and hybrid firstprinciples quantum mechanical/classical mechanical (QM/MM)simulations with experimental approaches to describe the transportmechanisms of a model bacterial protein, the D-galactonatetransporter DgoT, at atomic resolution. We found that protonationof D46 and E133 precedes galactonate binding and that substratebinding induces closure of the extracellular gate, with the conservedR47 coupling substrate binding to transmembrane helixmovement. After isomerization to an inward-facing conformation,deprotonation of E133 and subsequent proton transfer from D46 toE133 opens the intracellular gate and permits galactonate dissociationeither in its unprotonated form or after proton transferfrom E133. After release of the second proton, apo DgoT returns tothe outward-facing conformation. Our results provide a frameworkto understand how various SLC17 transport functions with distincttransport stoichiometries can be attained through subtle variationsin proton and substrate binding/unbinding. |
536 | _ | _ | |0 G:(DE-HGF)POF4-5243 |a 5243 - Information Processing in Distributed Systems (POF4-524) |c POF4-524 |f POF IV |x 0 |
536 | _ | _ | |0 G:(DE-HGF)POF4-5241 |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |c POF4-524 |f POF IV |x 1 |
536 | _ | _ | |0 G:(GEPRIS)426950122 |a DFG project G:(GEPRIS)426950122 - FOR 5046: Integrative Analyse epithelialer SLC26 Anionentransporter – von der molekularen Struktur zur Pathophysiologie (426950122) |c 426950122 |x 2 |
536 | _ | _ | |0 G:(GEPRIS)291198853 |a DFG project G:(GEPRIS)291198853 - FOR 2518: Funktionale Dynamik von Ionenkanälen und Transportern - DynIon - (291198853) |c 291198853 |x 3 |
536 | _ | _ | |0 G:(GEPRIS)329460521 |a DFG project G:(GEPRIS)329460521 - Protonentransfer und Substraterkennung in SLC17-Transportern (329460521) |c 329460521 |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |0 P:(DE-Juel1)191566 |a Gholami, Samira |b 1 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)165847 |a Alleva, Claudia |b 2 |
700 | 1 | _ | |0 P:(DE-Juel1)145614 |a Carloni, Paolo |b 3 |
700 | 1 | _ | |0 P:(DE-Juel1)169976 |a Alfonso-Prieto, Mercedes |b 4 |e Corresponding author |
700 | 1 | _ | |0 P:(DE-Juel1)136837 |a Fahlke, Christoph |b 5 |e Corresponding author |
909 | C | O | |o oai:juser.fz-juelich.de:1032107 |p VDB |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 0009-0000-1371-553X |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)191566 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)145614 |a Forschungszentrum Jülich |b 3 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)169976 |a Forschungszentrum Jülich |b 4 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)136837 |a Forschungszentrum Jülich |b 5 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-524 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5243 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Molecular and Cellular Information Processing |x 0 |
913 | 1 | _ | |0 G:(DE-HGF)POF4-524 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5241 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Molecular and Cellular Information Processing |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |0 StatID:(DE-HGF)3001 |2 StatID |a DEAL Wiley |d 2023-08-24 |w ger |
915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2023-08-24 |
915 | _ | _ | |0 StatID:(DE-HGF)1190 |2 StatID |a DBCoverage |b Biological Abstracts |d 2023-08-24 |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2023-08-24 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2024-12-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2024-12-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0501 |2 StatID |a DBCoverage |b DOAJ Seal |d 2024-04-08T07:44:01Z |
915 | _ | _ | |0 StatID:(DE-HGF)0500 |2 StatID |a DBCoverage |b DOAJ |d 2024-04-08T07:44:01Z |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b DOAJ : Anonymous peer review, Double anonymous peer review |d 2024-04-08T07:44:01Z |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2024-12-30 |
915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |d 2024-12-30 |
915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |d 2024-12-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2024-12-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b EMBO J : 2022 |d 2024-12-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2024-12-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2024-12-30 |
915 | _ | _ | |0 StatID:(DE-HGF)9910 |2 StatID |a IF >= 10 |b EMBO J : 2022 |d 2024-12-30 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-1-20200312 |k IBI-1 |l Molekular- und Zellphysiologie |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBI-1-20200312 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|