001032145 001__ 1032145
001032145 005__ 20250129092512.0
001032145 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06031
001032145 037__ $$aFZJ-2024-06031
001032145 041__ $$aEnglish
001032145 1001_ $$0P:(DE-Juel1)133936$$aSchlösser, Mario$$b0$$eCorresponding author
001032145 1112_ $$aIEEE International Conference on Quantum Computing and Engineering$$cMontreal$$d2024-09-15 - 2024-09-20$$gQCE24$$wCanada
001032145 245__ $$aScalable Room Temperature Control Electronics for Advanced High-Fidelity Qubit Control
001032145 260__ $$c2024
001032145 3367_ $$033$$2EndNote$$aConference Paper
001032145 3367_ $$2BibTeX$$aINPROCEEDINGS
001032145 3367_ $$2DRIVER$$aconferenceObject
001032145 3367_ $$2ORCID$$aCONFERENCE_POSTER
001032145 3367_ $$2DataCite$$aOutput Types/Conference Poster
001032145 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1730278785_26959$$xOther
001032145 520__ $$aQuantum bit control systems using room temperature electronics provide universities and research institutions with a cost-effective entry into quantum computing. Various approaches address the need for straightforward qubit controllers, particularly those based on AMD’s next-generation RFSoC FPGA, which integrate adaptive SoCs with internal ADCs and DACs. As superconducting qubit architectures advance to incorporate flux elements for direct Z axis control and the number of qubits grows, the demand for high-quality and numerous control channels increases. Within the project QSolid - Quantum Computer in the Solid State, a quantum computer demonstrator integrates a coupled ladder geometry qubit architecture demanding a significant higher number of flux lines. This paper explores the requirements for integrating and expanding the "QiController" electronics from Karlsruhe Institute of Technology. The new system includes up to ten additional cards capable of driving a total of 240 direct flux lines, utilizing low-latency DACs from Analog Devices with peripheral FPGAs. Our joint system design leverages the modularity, scalability, and thermal management of the industrial Standard ATCA, ensuring robust performance and ease of maintenance in this multi-FPGA setup. Initial unit tests of the electronics show promising improvements in noise levels and quality, suggesting that future verification on real qubit devices could establish this approach as a viable solution for scalable room-temperature control hardware. Developing a qubit control demonstrator for the 30-qubit device provides fundamental insights into transforming these room-temperature electronics into a scalable, integrated cryogenic solution.
001032145 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001032145 7001_ $$0P:(DE-Juel1)145688$$aHeil, Roger$$b1
001032145 7001_ $$0P:(DE-Juel1)171480$$aRoth, Christian$$b2
001032145 7001_ $$0P:(DE-Juel1)171927$$aBekman, Ilja$$b3
001032145 7001_ $$0P:(DE-HGF)0$$aArdila-Perez, Luis Eudaro$$b4
001032145 7001_ $$0P:(DE-HGF)0$$aScheller, Lukas$$b5
001032145 7001_ $$0P:(DE-HGF)0$$aFuchs, Marvin$$b6
001032145 7001_ $$0P:(DE-HGF)0$$aGartmann, Robert$$b7
001032145 7001_ $$0P:(DE-HGF)0$$aSander, Oliver$$b8
001032145 7001_ $$0P:(DE-Juel1)178064$$aJerger, Markus$$b9
001032145 7001_ $$0P:(DE-Juel1)190190$$aBarends, Rami$$b10
001032145 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b11
001032145 8564_ $$uhttps://juser.fz-juelich.de/record/1032145/files/Poster.pdf$$yOpenAccess
001032145 8564_ $$uhttps://juser.fz-juelich.de/record/1032145/files/uploaded%20abstract.pdf$$yOpenAccess
001032145 909CO $$ooai:juser.fz-juelich.de:1032145$$pdriver$$pVDB$$popen_access$$popenaire
001032145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133936$$aForschungszentrum Jülich$$b0$$kFZJ
001032145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145688$$aForschungszentrum Jülich$$b1$$kFZJ
001032145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171480$$aForschungszentrum Jülich$$b2$$kFZJ
001032145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171927$$aForschungszentrum Jülich$$b3$$kFZJ
001032145 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Karlsruhe Institute of Technology$$b4
001032145 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Karlsruhe Institute of Technology$$b5
001032145 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Karlsruhe Institute of Technology$$b6
001032145 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Karlsruhe Institute of Technology$$b7
001032145 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Karlsruhe Institute of Technology$$b8
001032145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178064$$aForschungszentrum Jülich$$b9$$kFZJ
001032145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190190$$aForschungszentrum Jülich$$b10$$kFZJ
001032145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b11$$kFZJ
001032145 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001032145 9141_ $$y2024
001032145 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001032145 920__ $$lyes
001032145 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001032145 9801_ $$aFullTexts
001032145 980__ $$aposter
001032145 980__ $$aVDB
001032145 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001032145 980__ $$aUNRESTRICTED
001032145 981__ $$aI:(DE-Juel1)PGI-4-20110106