001     1032145
005     20250129092512.0
024 7 _ |a 10.34734/FZJ-2024-06031
|2 datacite_doi
037 _ _ |a FZJ-2024-06031
041 _ _ |a English
100 1 _ |a Schlösser, Mario
|0 P:(DE-Juel1)133936
|b 0
|e Corresponding author
111 2 _ |a IEEE International Conference on Quantum Computing and Engineering
|g QCE24
|c Montreal
|d 2024-09-15 - 2024-09-20
|w Canada
245 _ _ |a Scalable Room Temperature Control Electronics for Advanced High-Fidelity Qubit Control
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1730278785_26959
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Quantum bit control systems using room temperature electronics provide universities and research institutions with a cost-effective entry into quantum computing. Various approaches address the need for straightforward qubit controllers, particularly those based on AMD’s next-generation RFSoC FPGA, which integrate adaptive SoCs with internal ADCs and DACs. As superconducting qubit architectures advance to incorporate flux elements for direct Z axis control and the number of qubits grows, the demand for high-quality and numerous control channels increases. Within the project QSolid - Quantum Computer in the Solid State, a quantum computer demonstrator integrates a coupled ladder geometry qubit architecture demanding a significant higher number of flux lines. This paper explores the requirements for integrating and expanding the "QiController" electronics from Karlsruhe Institute of Technology. The new system includes up to ten additional cards capable of driving a total of 240 direct flux lines, utilizing low-latency DACs from Analog Devices with peripheral FPGAs. Our joint system design leverages the modularity, scalability, and thermal management of the industrial Standard ATCA, ensuring robust performance and ease of maintenance in this multi-FPGA setup. Initial unit tests of the electronics show promising improvements in noise levels and quality, suggesting that future verification on real qubit devices could establish this approach as a viable solution for scalable room-temperature control hardware. Developing a qubit control demonstrator for the 30-qubit device provides fundamental insights into transforming these room-temperature electronics into a scalable, integrated cryogenic solution.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
700 1 _ |a Heil, Roger
|0 P:(DE-Juel1)145688
|b 1
700 1 _ |a Roth, Christian
|0 P:(DE-Juel1)171480
|b 2
700 1 _ |a Bekman, Ilja
|0 P:(DE-Juel1)171927
|b 3
700 1 _ |a Ardila-Perez, Luis Eudaro
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Scheller, Lukas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fuchs, Marvin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gartmann, Robert
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sander, Oliver
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Jerger, Markus
|0 P:(DE-Juel1)178064
|b 9
700 1 _ |a Barends, Rami
|0 P:(DE-Juel1)190190
|b 10
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 11
856 4 _ |u https://juser.fz-juelich.de/record/1032145/files/Poster.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1032145/files/uploaded%20abstract.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1032145
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)133936
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145688
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171480
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171927
910 1 _ |a Karlsruhe Institute of Technology
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Karlsruhe Institute of Technology
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Karlsruhe Institute of Technology
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Karlsruhe Institute of Technology
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Karlsruhe Institute of Technology
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)178064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)190190
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21