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Abstract We study dark matter scattering off 4He and
other light nuclei using chiral effective field theory. We
consider scalar DM interactions and include both one- and
two-nucleon scattering processes. The DM interactions and
nuclear wave functions are obtained from chiral effective
field theory and we work up to fourth order in the chiral
expansion for the latter to investigate the chiral convergence.
The results for the scattering rates can be used to determine
the sensitivity of planned experiments to detect relatively
light dark matter particles using 4He. We find that next-
to-leading-order scalar currents are smaller than expected
from power counting for scattering off 4He confirming ear-
lier work. However, the results for two-nucleon corrections
exhibit a linear regulator dependence indicating potential
problems in the applied power counting. We observe a linear
correlation between the, in principle not observable, D-wave
probability of various light nuclei and the scalar two-nucleon
matrix elements, again pointing towards potentially missing
contributions.

1 Introduction

While no direct evidence for dark matter (DM) has been
found in a laboratory experiment, there exists strong obser-
vational evidence for its existence [1]. Next-generation direct
detection experiments aim to probe uncharted parameter
space for a wide range of DM masses, going beyond the
‘traditional’ WIMP (weakly interacting massive particles)
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regime of GeV-to-TeV DM masses [2–4]. To interpret these
direct detection searches in terms of the underlying DM mod-
els and to connect to cosmological aspects of DM, such
as the relic density, it is important to have well-controlled
theoretical predictions for WIMP cross-sections off atomic
nuclei. These predictions are complicated due to the presence
of widely separated energy scales associated with particle,
hadronic, and nuclear processes. The last decade has seen
the development of effective field theory (EFT) approaches
to overcome this difficulty [5–11]. For example, by assum-
ing that DM fields are singlets under the Standard Model
(SM) gauge symmetries, the DM interactions with SM fields
can be captured by a series of effective operators which are
dominated by the operators of the lowest dimension. After
renormalization-group evolution to lower energies [12,13],
these interactions can be matched to effective interactions
between DM and hadrons and nuclei, which, in turn, can be
used to compute DM-nucleus scattering rates.

In this work, we apply the framework of chiral EFT, the
low-energy EFT of QCD, to perform the last steps of this
program. We consider scalar-mediated DM-SM interactions,
which we match onto chiral EFT hadronic interactions. The
chiral EFT power counting, often called Weinberg counting,
predicts that DM-nucleon interactions (or currents) provide
the leading-order (LO) contribution, whereas two-nucleon
currents appear at next-to-leading-order (NLO) [7–9,14,15].
This is potentially interesting as these NLO two-body cur-
rents are predicted to be relatively large and could potentially
be used to unravel the underlying DM interactions from DM
scattering off various nuclear isotopes.

Unfortunately, explicit computations of the two-body cor-
rections are found to be inconclusive. While shell-model
computations for 132Xe found O(10–20%) corrections [16],
of the expected size, calculations on lighter nuclei found
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smaller effects [15,17,18]. More problematic is that two-
body corrections in DM scattering off the deuteron, 3H, and
3He, strongly depend on the details of the applied wave func-
tion and thus on the applied nucleon-nucleon potential used
to generate the wave functions [15]. Similar conclusions were
drawn in Ref. [18], which applied phenomenological wave
functions of various light nuclei and observed a large depen-
dence on the applied regulator used in intermediate steps
of the quantum Monte Carlo calculations. These results are
worrisome as they indicate a potential problem in the chiral
EFT power counting for two-nucleon currents and potentially
jeopardize the interpretation of WIMP-nucleus scattering.
Similar problems were recently identified in other nuclear
probes of beyond-the-Standard Model physics, such as neu-
trinoless double beta decay [19] and indicate the presence of
additional short-range two-nucleon currents.

Our main purpose here is to extend the calculations of
Ref. [15] to scattering off 4He nuclei for two reasons. First
of all, experiments have been proposed using a liquid 4He
detector [3,20]. The main motivation to use relatively light
target nuclei is to get sensitivity to lighter WIMPs to which
more conventional experiments, for instance those involving
Xe nuclei, have less sensitivity. Second, compared to A = 2
and A = 3 nuclei, the binding energy per nucleon is much
larger and comparable to heavier isotopes. We are particu-
larly interested in determining whether the conclusions of
[15] regarding two-nucleon currents are related to the dilute-
ness of the deuteron and 3H and 3He nuclei.

In Sect. 2, our computational framework is described.
Specifically, we introduce the relation of the DM scatter-
ing cross sections to a set of response functions which are
calculated in following based on chiral nuclear wave func-
tions. The calculation of the wave functions is summarized in
Sect. 3. In this section, we also discuss our Bayesian approach
to quantify uncertainties due to the limiting the wave func-
tion calculations to finite order. Finally, we briefly introduce
nuclear transition densities that connect the wave function
to the application to DM currents. Our results are given in
Sect. 4. Special attention is given here to the dependence
on the regulator applied in the calculations. We conclude
in Sect. 5. Details of the definition of the densities and the
partial wave decomposition of the current are deferred to the
appendix.

2 Computational framework

In this work, we follow up the computations of Ref. [15]
and perform first-principle computations of DM scattering
off 4He isotopes. We apply chiral EFT to both generate the
4He wave functions as well as the DM currents and system-
atically compute the resulting DM-4He scattering rate. We
select 4He because of two reasons as mentioned above: it

Fig. 1 Diagrams contribution to DM-nucleus scattering. Solid lines
correspond to nucleons, single dashed lines to pions and double-dashed
lines to DM

is more sensitive for light WIMP searches, see e.g. [20,21]
and the binding energy per nucleon is much larger than for
A < 4 nuclei and comparable to heavier isotopes. We are
particularly interested to determine whether the conclusions
of [15] regarding two-nucleon currents are related to specific
spin-isospin properties and/or the diluteness of the deuteron
and 3H and 3He nuclei. Much of the calculation framework
follows that of Ref. [15] (see also Ref. [18] which uses a very
similar setup) and here we only give the main ingredients.
Our starting point are scalar DM-SM interactions of the form

Lχ = χ̄χ
(
cu mu ūu + cd md d̄d + cs ms s̄s

+cG αsG
a
μνG

μν a) (1)

where χ denotes a spin- 1
2 DM fermion (for other DM spins,

the computations are almost identical). u, d, and s denote,
respectively, quark fields with quark masses mu,d,s , and Ga

μν

is the gluon field strength. We factored out one power of
αs = g2

s /(4π). cu,d,s,G describe three unknown coupling
constants of mass dimension (−3) that parametrize the cou-
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plings strengths of DM with quarks and gluons. They can be
computed in specific DM models, for example in Higgs por-
tal models [22]. We consider the Lagrangian in Eq. (1) to be
valid at relatively low energies (μ = 1 GeV) where we match
to hadronic DM interactions. Other interactions beyond those
in Eq. (1) are certainly possible, but tend to lead to suppressed
two-body currents. See for instance Ref. [23] for recent first-
principle computations for spin-dependent cross sections.

By application of chiral perturbation theory, the interac-
tions in Eq. (1) can be matched to interactions between DM
and nucleons, pions, and heavier hadrons. The leading-order
(LO) currents involve a single nucleon and are conveniently
written as

J (one−body)(q) =
[

σπN − 9g2
Aπm3

π

4(4π fπ )2 F

( |q|
2mπ

)]

c̄q(is)

−δmN

4
c̄q(iv) τ 3

i

+csσs − cG
8π

9
mG

N . (2)

Here we have introduced the isoscalar and isovector combi-
nations of couplings

c̄q(is) = 1

2

[
cu

(
1 − ε) + cd(1 + ε

)]
,

c̄q(iv) =
[
cu(1 − 1

ε
) + cd

(
1 + 1

ε

)]
, (3)

in terms of ε = (md −mu)/(md +mu) = 0.36 ± 0.03 [24],
and the loop function associated to Diagram 1(b)

F(x) = −x + (1 + 2x2) arctan x

3x
, (4)

and F(x � 1) � 5x2/9 + · · · . The various low-energy
constants are given by [25]

σπN = (59.1 ± 3.5) MeV δmN = (2.32 ± 0.17) MeV , (5)

where we used a Roy–Steiner extraction of the pion nucleon
sigma term [26]. Lattice QCD tends to predict somewhat
smaller values but might be plagued by excited-state con-
tamination [27] and must be corrected for isospin breaking
[28]. For the strange matrix elements we use [29]

σs = ms
dmN

dms
= (37 ± 3) MeV. (6)

We definedmG
N ≡ mN −σπN −σs as the gluonic contribution

to the nucleon mass.
At next-to-leading-order (NLO) Diagram 1(c) induces a

two-body current given by

J two−body(q)

= −m2
π

(
gA

2 fπ

)2
(σ 1 · q1)(σ 2 · q2)

(q 2
1 + m2

π )(q 2
2 + m2

π )
τ1 · τ2 c̄q(is) (7)

where qi = p ′
i − pi is the difference between the outgoing

and incoming momentum of nucleon i , and σi (τi ) the spin
(isospin) of nucleon i .

At next order in the expansion (N2LO), several new dia-
grams appears, but they can all be absorbed into the LO one-
body currents and are effectively absorbed in the values of the
low-energy constants used in Eq. (2). At N3LO there appear
new two-nucleon currents both from tree- and loop-level dia-
grams [30] but also two-nucleon contact interactions with
presently undetermined low-energy constants. One outstand-
ing issue is how to consistently regularize the loop diagrams
entering the current and the loop diagrams arising from iter-
ating the nucleon-nucleon potential that lead to the nuclear
wave functions [31]. For these reasons we stick to the scalar
currents up to N2LO which only involve tree-level diagrams
and no unknown low-energy constants.

2.1 Scattering cross section

We investigate scattering processes χ( pχ ) + T ( pT ) →
χ( p′

χ ) + T ( p′
T ), where T denotes the target nucleus with

mass mT consisting of A nucleons. The elastic unpolarized
differential cross section is given by

dσ

dq2 = 1

4πv2
χ

1

2 j + 1

j∑

m j ,m′
j=− j

∣∣∣
∣
〈

T , jm′

j | Ĵ (q2) |
T , jm j

〉 ∣∣∣
∣

2

(8)

where q is the momentum transfer from DM to the target
nucleus, and vχ the DM velocity. The wave function of the
target nucleus |
T , jm j 〉 corresponds to a nucleus with total
angular momentum j and polarization m j .

To discuss the various one- and two-body nuclear response
functions it is convenient to factor out the isoscalar piece.
We follow Ref. [15] and classify the cross section in terms
of response functions, F (ν)

i, a (q
2), that depend on

– i = {is, iv, s, G} which label the dependence on the
DM-quark and DM-gluon couplings.

– The chiral order ν = 0, 1, . . . of the current where the
dominant current for every DM interaction ({c̄q(is) , c̄q(iv) ,

cs, cG}) begins at order 0.
– We divide the NLO contributions into two-nucleon, a =

2b, and radius corrections, a = r .

We then decompose

dσ

dq2 = c̄2
q(is)

σ 2
πN A2

4πv2
χ

∣
∣∣∣
(
F (0)

is

(
q2
)

+ F (1)
is, 2b

(
q2
)

+ F (1)
is, r

(
q2
)

+ · · ·
)
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+ αiv

(
F (0)

iv

(
q2
)

+ · · ·
)

+ αs

(
F (0)
s

(
q2
)

+ · · ·
)

+ αG

(
F (0)
G

(
q2
)

+ · · ·
) ∣∣
∣∣

2

, (9)

where we kept terms up to NLO in the chiral power counting,
and

αiv = −
(

δmN

4σπN

)
c̄q(iv)

c̄q(is)
, αs =

(
σs

σπN

)
cs
c̄q(is)

,

αG =
(

−8π

9

mG
N

σπN

)
cG
c̄q(is)

. (10)

Many response functions are actually equal up to this order
in the power counting and we have

F (0)
is (q2) = F (0)

s (q2) = F (0)
G (q2) , (11)

which are normalized to F (0)
is (0) = 1. The radius correc-

tion F (1)
is, r

(
q2
)

also involves the same nuclear information as

F (0)
is except for an additional overall dependence on q2. We

therefore need to perform nuclear calculations of F (0)
is (q2),

F (0)
iv (q2), and F (1)

is, 2b

(
q2
)
, which we will present below for

various target nuclei.

3 Nuclear wave function and scattering matrix elements

3.1 Nuclear wave functions

We use the momentum-space basis to calculate the wave
function and matrix elements involving the DM interactions
discussed above. 2H, 3He, and 4He wave functions are eval-
uated by solving the non-relativistic Schrödinger equation
in momentum-space. Ref. [15] and Ref. [32] shows detailed
calculation of 2H and 3He, and 4He wave functions, respec-
tively. In this section, we summarize the relevant parts of the
wave function calculations.

The wave function of deuteron (d) is easily evaluated by
solving

|ψd〉 = 1

Ed − T
V12|ψd〉 , (12)

where Ed is the deuteron binding energy, T is the two-
nucleon (NN ) kinetic energy, and V12 is the NN potential. It
is convenient to use the partial wave basis (|pα〉) for the wave
function, where p is the momentum of the deuteron andα rep-
resents the partial wave contributing to the deuteron bound
state. The deuteron bound state has a total orbital angular
momentum l12 = 0, 2, a spin s12 = 1, and a total angular
momentum j12 = 1.

We use modern phenomenological NN interactions and
χPT to calculate the nuclear wave functions. We calculate
the former by using the standard AV18 [33] and CD-Bonn
[34] phenomenological interactions. Since these two interac-
tions have different non-observable kinetic energies, poten-
tial energies, and D-state probabilities, they provide an added
benefit of checking model dependence [15].

We mainly use semilocal coordinate-space regularized
(SCS) chiral interactions from Ref. [35] to calculate the chi-
ral wave functions up to N4LO chiral order. For 4He, we
also show some results based on the semilocal momentum-
space (SMS) regularized interactions from Ref. [36] which
include N5LO contact interactions in the F-waves, these are
labeled N4LO+. The approach successfully describes various
NN observables to a high degree of accuracy provided that
the interactions are regulated using finite value cut-offs. The
SCS interactions use a regularization defined in the configu-
ration space and parameterized by a short-distance scale R.
In Ref. [37], an optimal range of cut-offs R between 0.8 fm
and 1.2 fm has been identified. For this range of cutoffs, the
LECs are of natural size and no spurious bound states exists.
It was also found that the best description of NN data can
be achieved for R = 0.9 fm. Since an electromagnetic (EM)
interaction accompanies AV18, we included the same EM
interactions for the CD-Bonn and the chiral potentials except
for the neutron-proton system since the relevant parts are here
already included in the strong part.

The calculation of the 3He and 3H wave functions was
summarized in Ref. [15]. The wave functions for 4He (|
〉)
are obtained by rewriting the Schrödinger equation into a set
of two Yakobovsky equations [32]

|ψ1A〉 ≡ |ψ(12)3,4〉 = G0t12P[(1 − P34)|ψ1A〉 + |ψ2A〉]
+ (1 + G0t12)V

(3)
123|
〉 , (13)

|ψ2A〉 ≡ |ψ(12)34〉 = G0t12 P̃[(1 − P34)|ψ1A〉 + |ψ2A〉],
(14)

where we have introduced two Yakubovsky components
|ψ1A〉 and |ψ2A〉. The NN interactions enter into this equation
by the NN T-matrix t12 and G0 denotes the free 4N propaga-
tor. From the three-nucleon force (3NF) the part V (3)

123 sym-
metric in subsystem (12) is applied. The total 3NF is obtained
by cyclic permutations as

V123 = V (1)
123 + V (2)

123 + V (3)
123. (15)

In our previous study, we found that the contribution of the
3NFs to the matrix elements relevant for dark matter scat-
tering is minor [15]. Therefore, we will neglect this part
in the calculations below. Using the antisymmetry of the
four-nucleon wave functions, it is possible to relate differ-
ent Yakubovsky components using the permutation operators
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P = P12P23 + P13P23, P34 and P̃ = P14P23. The total 4N
wave function can then be obtained applying these permuta-
tion operators to the Yakubovsky components

|
〉 = [1 − (1 + P)P34](1 + P)|ψ1A〉
+ (1 + P)(1 + P̃)|ψ2A〉 (16)

The advantage of using Yakubovsky components for these
bound state calculations is that the partial wave decom-
position converges faster for the Yakubovsky components
than for the wave function and also because ψ1 and ψ2 are
expanded independently in 3+1 and 2+2 Jacobi momenta,
respectively.

Figure 8 of the appendix defines these Jacobi coordinates.
Explicitly, the basis states for 3+1 coordinates are given by

|p12 p3 p4α〉
= |p12 p3 p4 [((l12s12) j12(l3 1/2)I3) j3(l4 1/2)I4] J

((t12 1/2)τ31/2) T 〉 (17)

where p12, p3 and q4 are magnitudes of the Jacobi relative
momenta between particle (12), the third particle and the (12)
subsystem and the fourth particle and the (123) subsystem,
respectively. The orbital angular momenta related to these
momenta are denoted by l12, l3, and l4 and are coupled to the
spin of the (12) system s12, and the spin- 1

2 of particles 3 and 4
to intermediate angular momenta j12, I3, and I4. We indicate
the coupling scheme using the brackets in Eqs. (17) and (18).
j12 and I3 are coupled to the total angular momentum of the
(123) system, j3, which is when coupled with I4 to the total
angular momentum of the 4He state J = 0. The isospin of
the (12) subsystem t12 is coupled with the isospin of the third
particle to τ3 and with the fourth particle to the total isospin
of 4He T = 0.

For 2+2 coordinates the basis states are

|p12 p34qβ〉 = |p12 p34q ([(l12s12) j12λ] I (l34s34) j34) J

(t12 t34)T 〉 (18)

where p12, p34, and q are magnitudes of the Jacobi rela-
tive momenta between particle (12) and (34) and relative
momentum of (12) and (34) subsystems, respectively. The
additional orbital angular momenta related to these momenta
are denoted by l34 and λ. l12 and l34 are coupled to the spin of
the (12) and (34) systems, s12 and s34, to subsystem angular
momenta j12 and j34. j12 and λ are coupled to the interme-
diate angular momentum I which is then coupled with j34 to
the total angular momentum J = 0. The isospin of the (12)
and (34) subsystems are coupled to the total isospin T = 0.

For our calculation, we restrict the orbital angular momen-
tum to 6, j12 to 5 and the sum of the orbital angular moment
l12 + l3 + l4 and l12 + l34 + λ to 10. With this restriction, we

achieve binding energy converged up to 20 keV. More details
can be found in Ref. [32].

3.2 Chiral expansion and uncertainty estimation

On top of the chiral expansion scheme associated with the
dark matter current operators, also the wave functions are
obtained by chiral power counting scheme. The expansion
of the wave functions follows chiral effective field theory
[36] for describing the target nucleus in the absence of dark
matter. The parameter for this expansion is associated with
a momentum scale at the order of binding momenta and the
pion mass ∼ Qψ ∼ mπ/�χ ∼ γ /�χ , where �χ ∼ 1 GeV,
is the chiral EFT breakdown scale and γ denotes the bind-
ing momentum. The current expansion considers an external
scalar source, dark matter [38], which also has an expansion
in Qψ but also obtains corrections scaling as QJ ∼ q/�χ ,
where q denotes the momentum transfer. For the currents we
will collectively denote the scaling with QJ to also account
for corrections scaling as mπ/�χ ∼ γ /�χ .

The truncation error of matrix elements are dominated by
the largest corrections to either source. That is, performing
the computation at a fixed order of the wave functions ν and
the current operator μ, the matrix element is expected to scale
as

|ψ(ν)〉 ≡ |ψ〉[1 + O(Qν+1
ψ )] , (19)

Ĵ (μ) ≡ Ĵ [1 + O(Qμ+1
J )] , (20)

⇒ 〈ψ(ν)| Ĵ (μ)|ψ(ν)〉
= 〈ψ | Ĵ |ψ〉[1 + max(O(Qμ+1

J ), O(Qν+1
ψ ))] . (21)

Obviously, it depends on the orders μ and ν up to which the
currents and the wave functions were expanded, respectively,
and on the expansion scales QJ and Qψ which contribution
drives the uncertainty of the matrix element. For external
currents at a momentum scale close to the nuclear scale, i.e.
QJ ≈ Qψ , it makes sense to combine power countings [39]
so that the maximum of both corrections can be related to the
minimum of respective orders. As such, one has to simulta-
neously increase both orders to make more accurate predic-
tions.

To test the accuracy in the description of the scalar-DM
matrix elements, we test the convergence behavior for DM-
currents in dependence of the chiral order of the wave func-
tions

|〈ψ(ν)| Ĵ (μfixed)|ψ(ν)〉|2 ≡ J (ν)(μfixed), (22)

This allows us to employ standard chiral uncertainty esti-
mation schemes [40] for the matrix element, where the con-
verged matrix element O(∞)

J is equal to the matrix element

123
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at a finite order plus corrections

J (∞)(μfixed) = J (ν)(μfixed) + δ J (ν)(μfixed). (23)

This correction, the truncation error, follows the expansion

J (ν)(μfixed) ↔ J ref
ν∑

n=0

cnQ
n
ψ,

δ J (ν)(μfixed) ↔ J ref
∞∑

n=ν+1

cnQ
n
ψ. (24)

For a fixed reference scale J ref and expansion parameter Qψ ,
knowing the values of all expansion coefficients cn allows to
infer the size of the truncation error. In particular, we apply a
Bayesian inference scheme where we relate the distribution
of expansion coefficients to the final observable. As such
the posterior predictive distribution of the truncation error
is obtained by integrating over (marginalizing) the poste-
rior distribution of the expansion coefficients P({cn}|M, D)

times the distribution of the observable given the coefficients
(i.e., a delta distribution)

P(δ|ν; M, D)

∼
(
∏

n

∫
dcn

)

δ(δ − δ J (ν)({cn}))P({cn}|M, D) . (25)

The data points D correspond to observables computed at
different chiral orders D = {J (ν)(μfixed)}, times a prior dis-
tribution P({cn}|M) for the expansion coefficients

P({cn}|M, D) ∼ exp
{
−χ2({cn}, D)/2

}
P({cn}|M) . (26)

The letter M indicates that your probabilities also depend
on the model, i.e. the ansatz in Eq. (24). The posterior
distribution is given by a data likelihood distribution (∼
exp{−χ2/2}) with

χ2 =
∑

ν

(

J ν − J ref
ν∑

n=0

cnQ
n
ψ

)2

. (27)

The χ2 distribution employed here does not accommodate
any additional uncertainty as the only uncertainty for the data
points D, in this case, are numerical errors which we assume
to be uncorrelated and of equal size for each computation.
Thus they correspond to an overall normalization factor not
important for this analysis. The employed prior, following the
prescription in the literature, aims at quantifying the natural-
ness assumption. This estimation is enabled by the software
gsum [41],1.

1 With df=0.6 scale=0.8 and the expansion parameter Qψ =
(mk

π + qk)/(�b(mk−1
π + qk−1)), where q is the scattering momentum,

mπ the pion mass and �b ∼ 600 MeV the breakdown scale. The choice
of k is not fixed and we follow [41] and set k = 8.

3.3 Density matrix formalism

In this section, we describe the theoretical framework for
calculating matrix elements in Eq. (8). We can separate this
calculation into two parts: the first part is the interaction
kernel, which captures the one- and few-body currents, and
the second part is the structure, which contains the accurate
eigenstates of the Hamiltonian of the nucleus.

In the traditional method, we calculate the cross-section
by integrating the interaction kernel directly with the wave
function of the nucleus.

〈
 ′|O|
〉traditional =
∫

{dpi }
 ′†({pi })
({pi })O({pi }) ,

(28)

where {pi } are the momentum of the internal nucleons i , the
quantum numbers of the nucleons are suppressed for sim-
plicity.

Ref. [42] introduced an alternative method using transi-
tion density amplitudes ρ (referred to as densities)

〈
 ′|O|
〉density formalism =
∑

{ni }
ρ({ni }) ⊗ O({ni }) , (29)

where {ni } are the quantum number of the internal nucle-
ons i . This approach significantly improves the computa-
tional time; for Compton scattering the computation time
gets reduced by a factor of ten [42]. It also separates the cal-
culations of structure part and operator part so that it is more
easy to apply the same operators to different nuclei. Finally,
the densities and operators can be independently tested mit-
igating the danger of computational mistakes. The densities
are freely available using a python package for accessing the
files [43]. We have used this method to calculate the matrix
elements and we found an order-of-magnitude speed-up. This
works because the densities do not depend on the interaction
probes (in our case, scalar dark matter interaction) and the
nuclear-structure part of the calculation gets factorized from
the interaction kernel part.

For any external-probe matrix element, we need to read
these nuclear densities and do convolution with the appro-
priate interaction kernels that encode the one- and two-body
current operators on the momentum-spin basis. The computa-
tional effort associated with this nuclear structure piece of the
calculations increases significantly with A, but highly paral-
lelized and optimized codes exist that solve the Schrödinger
equation and obtain the wave functions of light nuclei. Con-
structing densities from those wave functions is straightfor-
ward. In short, once we generate the nuclear densities using
a supercomputer, all future matrix element calculations can
be performed on personal computers by reading these densi-
ties. A detailed calculation of one- and two-body densities is
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presented in Ref. [42] for A = 3. In Appendix A we briefly
introduce the generalization to 4He.

4 Results and discussion

We calculated the response functions F (0,1)
is (q2) for trans-

fer momenta in the range q = (0 − 200) MeV using wave
functions of different chiral orders and a range of cut-offs
{R2, R3, R4, R5} = {0.9, 1.0, 1.1, 1.2} fm (we have omitted
R1 = 0.8 fm as it leads to a poorer description of the NN
data than R2). Before we discuss the wave function depen-
dence and theoretical uncertainties of our computations, we
first analyze the general features using a fixed wave function
obtained from the cut-off R2.

In Fig. 2, we present the response functions for 2H, 3He,
and 4He nuclei as function of the transferred momentum. The
maximum momentum transfer is related to the DM and target
mass and the DM velocity distribution. Using the standard
distribution and the DM escape velocity vesc

χ � 550 km/s
[44], and assuming mχ ∼ m4He the maximum momentum
transfer is roughly |q| ≤ 3 × A MeV, so about 12 MeV for
4He [15]. We show results for larger momentum transfer as
well to analyze the accuracy and cut-off dependence of our
results, and for non-standard DM velocity distributions.

The LO response function
∣∣∣F (0)

is (q2)

∣∣∣
2
, including just the

one-nucleon DM interactions, is shown for the three light
nuclei in Fig. 2 in blue. The result use N4LO wave func-
tions and a fixed cut-off. At zero momentum transfer, the LO
response functions equal unity because of the normalization
condition. The NLO response function is defined as

∣∣∣F (0+1)
is (q2)

∣∣∣
2 ≡

∣∣∣F (0)
is (q2) + F (1)

is,r (q
2) + F (1)

is,2b(q
2)

∣∣∣
2

(30)

and includes the radius and two-body currents. It is shown in
orange. We conclude that F (0)

is (q2) is a good approximation
for the considered range of transfer momentum. The NLO
contributions only change the LO results by a few percent for
2H, 3He, and 4He. Despite the larger binding energies, the
NLO corrections does not grow for 4He and remain signifi-
cantly smaller than power-counting estimates. It is intriguing
that much larger corrections, up to 20-30%, are found for
heavier systems [16], and it would be interesting to find for
which size of nucleus this behavour kicks in. For 2H and 3He,
the NLO corrections decrease for larger transfer momentum
due to a cancellation between radius and two-body NLO cor-
rections. This is not true for 4He where both terms have the
same sign although, as discussed below, this does depend on
the applied regulator.

To capture the details of the NLO contribution, we intro-
duce the relative radius and two-body corrections

�(r) =
∣∣∣F (0+1)

is (q2)

∣∣∣
2 −

∣∣∣F (0)
is (q2) + F (1)

is,2b(q
2)

∣∣∣
2

∣∣
∣F (0+1)

is (q2)

∣∣
∣
2 ,

�(2b) =
∣∣∣F (0+1)

is (q2)

∣∣∣
2 −

∣∣∣F (0)
is (q2) + F (1)

is,r (q
2)

∣∣∣
2

∣∣∣F (0+1)
is (q2)

∣∣∣
2 . (31)

The radius contribution is given by

�(r) � 2F (1)
is,r (q

2)

F (0+1)
is (q2)

� − 2

σπN

9g2
Aπm3

π

4(4πFπ )2 F

( |q|
2mπ

)

|q|�2mπ−−−−−→ − 5g2
Aπmπ |q|2

8(4πFπ )2σπN
. (32)

The radius contribution vanishes at lower momentum but
becomes dominant at higher momentum and makes the net
NLO correction negative. Furthermore, all the nuclear effects
drop out and �(r) shows identical momentum dependence for
all nuclei, which has been verified by our results. In Fig. 3,
we show the momentum dependence of �(r) for the 4He
nucleus. We omitted other nuclei and cutoffs because of the
identical behavior.

In Fig. 4, we present our results on �(2b) for various
nuclei. In the left panels, we apply N2LO chiral wave func-
tions and show results for the four applied regulators. The
two-body corrections are small and lie well below power-
counting estimates as was found in Refs. [15,18]. What is
worrisome is that the regulator dependence is large, rang-
ing from �(2b)(3He) = (−0.01 ± 0.13)% to �(2b)(4He) =
(0.4 ± 1.9)% at q2 = 0. Even the signs are uncertain. One
might hope this would improve once higher-order wave func-
tions are applied and the corresponding results are shown in
the right panels. The 2H and 3He results are indeed essentially
regulator independent for N4LO wave functions, confirming
results found in Ref. [15]. However, no such convergence is
shown for 4He as clearly seen in bottom-right panel of Fig. 4.

This is puzzling. The power counting indicates that at
this order the only NLO currents are coming from one-body
radius corrections and the pion-range two-body corrections.
There are no free counter terms so the calculations should
show regulator-independent matrix elements. We stress that
similar cut-off dependence is seen in quantum Monte Carlo
calculations of DM response functions for light nuclei using
phenomenological NN potentials [18]. In Fig. 5, we demon-
strate that the power-counting issues only affect the two-body
currents. The one-body corrections show good convergence
for all nuclei even for N2LO wave functions.
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Fig. 2 Isoscalar structure functions of 2H, 3He, and 4He as a function of transfer momentum q. We apply N4LO wave functions with a fixed cut-off
R2 = 0.9 fm. The chiral order ν = 0 (0 + 1) is shown by the blue (orange) line

Fig. 3 The percentage relative contribution of radius corrections of
4He as a function of transfer momentum q for cut-off R2 and the N4LO
wave function

In Fig. 6, we present our findings in a different way.
We plot LO and NLO isoscalar structure functions of 4He
for three values of transfer momenta q and four cut-offs.
We have included different chiral order wave functions to
check the convergence of the matrix elements, LO and NLO
wave functions are not included. Apart from F (1)

is,2b(q
2), the

isoscalar structure functions display order-by-order conver-
gence for wave functions and exhibit regulator independence.
The F (0)

is (q2) shows the expected decrease in values for
higher values of transfer momentum, which is in agreement
with Ref. [15]. The increase in uncertainty of F (0)

is (q2) for
higher transfer momentum is the reflection of the compli-
cated nature of four-nucleon wave functions.

NLO contributions occur only at few percent level. The
relatively minute uncertainty of �(r)(q2) can be understood
as the correction is proportional to theF (0)

is (q2), see Eq. (32).
The two-body corrections account for almost all the uncer-
tainties associated with the NLO corrections. The bottom
panel of Fig. 6 shows that F (1)

is,2b(q
2) fails to converge to a
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Fig. 4 The percentage relative contribution of two-body corrections of 2H, 3He, and 4He as a function of transfer momentum q for various cut-offs
for N2LO (left) and N4LO (right) chiral wave functions

Fig. 5 Isoscalar one-body structure functions as a function of transfer momentum q for LO to N4LO chiral wave functions. The left (right) panel
matrix elements are calculated using cut-off R5 = 1.2 fm (R2 = 0.9 fm)

fixed value for different regulators and for highest-order wave
functions shows a linear dependence on the applied cut-off
for all values of transfer momenta.

The uncertainty bands in Fig. 6 have been obtained from
the prescription in Sect. 3.2. Each uncertainty band is cen-
tered at the average of the amplitude values for different cut-
offs. For properly renormalized results, we would expect the
amplitudes of different regulators to lie within the uncer-
tainty margins. As we can see in Fig. 6, this is observed for
the LO and one-body NLO corrections. For �(2b)(q2), on

the other hand, the amplitude values span beyond the uncer-
tainty bands. In fact, for the N4LO+ wave function, none of
the �(r)(q2) values fall within the band.

What does this regulator dependence of two-nucleon
matrix elements imply? It could indicate a problem with
the applied Weinberg power counting for scalar currents. In
principle, regulator dependence implies sensitivity to short-
distance physics which has to be absorbed by short-range
operators, in this case a DM-NN interaction. Such terms
appear in Weinberg power counting only at N3LO but might
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Fig. 6 Isoscalar structure functions of 4He up to chiral order ν = 0+1
as a function of cut-offs for different transfer momentum q. The first and
second panel indicate the leading order (ν = 0) one-nucleon isoscalar
structure functions and the full order (ν = 0 + 1) isoscalar structure

functions, respectively. The third (fourth) panel indicate the percent
radius (two-body) corrections. We present the results for chiral wave
functions (N2LO to N4LO+). We omitted the results for LO and NLO
wave functions due to the large uncertainty bands

have to be promoted to lower order to ensure order-by-order
renormalization. There is by now a lot of evidence that this is
the case for neutrinoless double beta decay where a formally
subleading contact term must be included at leading order
[19,45–47]. If this is the case here, it implies that including
NLO scalar currents for DM-nucleus scattering depends at
least on one unknown LEC, not included in existing many-
body nuclear structure calculations [16,48]. It would also
impact our understanding of the quark mass dependence on
nuclear binding energies through the nuclear sigma terms.
Interestingly, given sufficiently accurate lattice QCD data on
nuclear binding energies as a function of the quark mass, it

should be possible to fit the scalar contact counter term to lat-
tice data and determining whether indeed these terms must
be promoted to leading order [17,49]. While it is tempting to
argue that the missing counter term is not too relevant con-
sidering that the two-nucleon matrix elements are found to
be small, this is dangerous as there is no guarantee that the
finite part of the counter term is of the same size and it could
instead be a genuine O(30%) correction.

On the other hand, it might be that due to some acciden-
tal or so far not-understood cancellation, that the NLO two-
nucleon matrix elements are small and essentially demoted
to N2LO contributions. The observed regulator dependence
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Fig. 7 The plots shows the
correlation between the isoscalar
structure functions and the
D-wave probability for 2H, 3He,
and 4He represented by circle,
square, and diamond data points.
The data points are assigned
different colors corresponding to
the chiral order of the wave
function. The cut-off Ri used for
the calculation is indicated by
label i on the data point. For 2H
and 3He, we have included the
cut-off R1 = 0.8 fm and results
from phenomenological wave
functions from Ref. [15]

is indeed of that size (however, we are only varying the regu-
lators in a small range and the uncertainty might grow with a
larger range). If true, it would be interesting to investigate the
N2LO response functions by including higher-order scalar
currents derived in Ref. [30]. Unfortunately, these currents
come with unknown low-energy constants.

Finally, we note that the observed cut-off dependence of
our results can be cast in a different light. In Fig. 7, we present
an observed linear correlation between the two-body matrix
element and the D-wave probability for 2H, 3He, and 4He.
The D-wave probability describes how much of the nuclear
wave function involves l = 2 NN states and is a consequence
of S−D mixing from the nuclear tensor force. It was pointed
out by Friar [50] already that the D-wave probability is not an
observable: it can be changed by unitary transformations of
the NN potential. Therefore, the correlation with the unob-
servable quantity also points to a potential flaw in the applied
power counting.

5 Conclusions

We have investigated DM scattering of light nuclei using the
framework of chiral effective field theory. Our main focus
has been on scattering off the 4He nucleus, a potential target
for direct-detection experiments, but we have also investi-
gated 2H and 3He nuclei. The nuclear wave functions were
calculated from chiral nuclear forces up to fourth order in
the chiral expansion. The light nuclei allowed us to calcu-
late bound-state and scattering equations directly with a high
degree of accuracy. This allowed us to investigate the uncer-
tainties and convergence of observables for different chiral
orders of the wave functions with a high degree of precision.

We focused on the scalar interaction of DM and quarks.
Using χPT, we calculated the ensuing scalar hadronic cur-
rent up to NLO (actually N2LO since no new corrections
appear at this order). The NLO current consists of radius and
two-body corrections. For 2H, 3He, and 4He, the NLO cur-

rents modify LO results by a few percent only despite larger
power-counting expectations. Radius and two-nucleon cor-
rections are found to be of similar size in all three nuclei
under investigation. The one-body and radius corrections are
in good agreement with earlier work [15,18].

Taken at face value, our results imply that NLO corrections
are small and the LO response functions can be directly used
in the analysis of experiments using light nuclei as targets.
Unfortunately, our results for NLO two-nucleon corrections
exhibit a clear regulator dependence. While, for 2H and 3He
we somewhat recover regulator independence when using
high-order chiral wave functions, this is not the case for 4He.
Furthermore, in all cases we find a linear correlation between
the two-body matrix element and the D-wave probability of
the nucleus. Because there are no contact terms at NLO to
absorb the regulator dependence, the regulator dependence
could indicate that the scalar currents are not properly renor-
malized. The LO current and NLO radius contributions do
not show any such regulator dependence, indicating that all
regulator dependence arises from the two-body effects. A
potential remedy could be to promote formally subleading
DM-nucleon-nucleon interactions to lower order, as is done,
for instance, in the description of neutrinoless double beta
decay. This would also impact existing predictions for dark
matter scattering of heavier nuclei. It could also be that two-
nucleon effects should be demoted to N2LO. More work is
needed to clarify this issue for instance by investigating the
impact of higher-order scalar currents derived in Ref. [30] in
the light nuclei under consideration and beyond.
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Appendix A Density matrix formalism

Appendix A.1 Kinematics and partial-wave decomposition

We assume that the nucleus has A nucleons, which in the ini-
tial state have total angular momentum J , spin-projection M
onto the z-axis, and isospin-projection MT , several isospins
T may contribute in general. Here, we will be mostly con-
cerned with 4He for which A = 4, J = 0, MT = 0, the dom-
inant contribution comes from T = 0, but isospin breaking
could in principle introduce small T = 1 and 2 contributions
to the 4He wave function. It turns out that these contributions
are not important for the dark matter interactions studied
here.

Additionally, we also assume that the scattering happens
in the center of mass frame of the nucleus-DM system. We
denote the momentum of the incoming (outgoing) nucleon
as −k (−k′), and the incoming (outgoing) DM will have
the opposite momentum. The momentum of incoming DM
is chosen to lie along the z-axis k = kez , which also is the
quantization axis for the spin and angular momentum projec-
tions. We furthermore assume that the scattering is happening
in x-z plane so that k′ = k′ (sin ϑex + cos ϑez). The elastic
scattering ensures |k| = ∣

∣k′∣∣, and the transfer momentum
into nucleus is Q = k − k′.

Relative Jacobi coordinates can be defined in various ways
by defining different subsystems. For the 4N system, except
for permutations of particles, one finds only two distinct ways
for arranging these subclusters, the so-called ‘3+1’ and ‘2+2’
coordinates, as depicted in Fig. 8. The ‘3+1’ coordinates sin-
gles out the last nucleon and provides a relative momentum of
this last nucleon with respect to the remaining A − 1 nucle-

Fig. 8 3+1 and 2+2 Jacobi coordinates of the four-nucleon system

ons. This coordinate will be most useful for the definition
of one-nucleon densities below. The ‘2+2’ coordinates sin-
gle out the pair of nucleons 1 and 2 moving relative to the
remaining A − 2 nucleons. We will later use this coordinate
for defining the two-nucleon densities.

Denoting the nucleon momenta by ki , we can define the
Jacobi momentum of the spectator particle in the A − 1+1
coordinates as

qA = A − 1

A
kA − 1

A

A−1∑

i=1

ki = kA + 1

A
k (A.1)

which, for 4He (A = 4) nucleus, is

q4 = 3

4
k4 − 1

4
(k1 + k2 + k3) = k4 + 1

4
k. (A.2)

This relation will be important for the implementation of
one-body densities.

For the two-body densities, the relative and total pair
momenta of the (12) nucleon system

p12 = 1

2
(k1 − k2), k12 = k1 + k2 (A.3)

are the momenta of interest. These can be easiest defined for
A − 2+2 coordinates. Conveniently, p12 is already part of
this set of Jacobi coordinates. The total pair momentum is
related to the relative momentum of the (12) subsystem and
the remaining nucleons

q = A − 2

A
k12 − 2

A

A∑

i=3

ki = k12 + 2

A
k = k12 + 1

2
k

(A.4)

where the last relation holds for A = 4.
We will be focusing on 4He for the remaining discussions.

We denote the spin-projection state of 4He as |M〉, where we
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suppress the labels of JMT and the bound-state energy. This
state is the eigenstate for the nucleus at rest, total angular
momentum, and its z-component. For 4He, the total angular
momentum of J = 0 implies that M = 0.

The wave function can be expressed in both kinds of coor-
dinates, ‘3+1’ and ‘2+2’. In this work, we use Yakubovsky
equations to get the wave functions. In this case, both repre-
sentations of the wave functions are naturally obtained. For
calculations that are based on, e.g., the Jacobi no-core shell
model [51,52], wave functions are usually only obtained for
‘A-1–1’ coordinates. However, also in this case, transforma-
tion to ‘2+2’ coordinates can be easily performed. In fol-
lowing, we will assume that the wave functions are given in
‘3+1’ coordinates by

ψα(p12 p3q4) = 〈p12 p3q4α|M〉 (A.5)

where α represents the set of angular momentum and isospin
quantum numbers defined in Eq. (17). Similarly, the wave
function in ‘2+2’ coordinates reads

ψβ(p12 p34q) = 〈p12 p34qβ|M〉. (A.6)

The corresponding set of quantum numbers is defined in
Eq. (18).

The labels of outgoing particles are primed. The states
|M〉 must be multiplied by an eigenstate of the nuclear cm
momentum operator to conserve the momentum. This will
result in the δ(3)(k − k′ − Q). These momentum delta func-
tions are not included in the following calculations to shorten
the notation.

Appendix A.2 One-body density

Assuming that the active nucleon is the fourth one, the rele-
vant matrix element for one-body operator reads

〈k′
4|〈l ′4ml′

4 |〈s′
4m

s′
4 |〈t ′4mt ′

4 |Ô4(k, Q)|t4mt
4〉|s4m

s
4〉|l4ml

4〉|k4〉
= δmt ′

4 ,mt
4
δ(3)(k′

4 − k4 − Q)O4(m
s′
4 m

s
4m

t
4; k4; k, Q).

(A.7)

Here mt
4 is conserved because the DM interaction does not

change the charge of the struck nucleon. For the one-body
density, we allow for a dependence of the operator on the
momentum k4 of the active nucleon which is necessary to
take boost corrections into account as they appear in sub-
leading operators. This explicit dependence on the momen-
tum of the active nucleon is included in terms of a multipole
expansion which we truncate at order Kmax.

O4(m
s′
4 m

s
4m

t
4; k4; k, Q) ≡

Kmax∑

K=0

K∑

κ=−K

√
4π

2K + 1
(k4)

K

×YKκ (k̂4)Õ4(m
s′
4 m

s
4m

t
4; Kκ; k, Q), (A.8)

where k̂4 is the unit vector of k4. In practice, we only use
Kmax = 1.

Now let us look at the matrix element of Ô4 that we want
to calculate

〈M ′|Ô4(k, Q)|M〉
=
∑

αα′

∫
dp12 p2

12

× dp3 p2
3 dq4 q2

4 dp′
12 p

′2
12 dp′

3 p
′2
3 dq ′

4 q
′2
4

× ψ
†
α′(p′

12 p
′
3q

′
4)ψα(p12 p3q4)

× 〈p′
12 p

′
3q

′
4,
[[l ′12s

′
12] j ′12(l

′
3s

′
3)I

′
3] j ′3(l ′4s′

4)I
′
4

]
J ′M ′,

[
(t ′12t

′
3)τ

′
3t

′
4

]
T ′M ′

T

∣
∣ Ô4(k, Q)

|p12 p3, [[l12s12] j12(l3s3)I3] j3(l4s4)I4] JM,

[(t12t3)τ3t4] T MT 〉 . (A.9)

Using Clebsch–Gordan coefficients 〈 j1m1, j2m2| jm〉 we
can explicitly decompose α so as to separate the spin-isospin
quantum numbers of the active nucleon 4 from those of the
other three nucleons:

〈M ′|Ô4(k, Q)|M〉
=
∑

αα′

∫
dp12 p2

12

× dp3 p2
3 dq4 q2

4 dp′
12 p

′2
12 dp′

3 p
′2
3 dq ′

4 q
′2
4

× ψ
†
α′(p′

12 p
′
3q

′
4)ψα(p12 p3q4)

×
∑

m′
4

〈
j ′3(M ′ − m′

4), I
′
4m

′
4

∣
∣J ′M ′〉

×
∑

mt ′
4

〈
τ ′

3(M
′
T − mt ′

4 ), t ′4mt ′
4

∣∣T ′M ′
T

〉

×
∑

m4

〈 j3(M − m4), I4m4|JM〉

×
∑

mt
4

〈
τ3(MT − mt

4), t4m
t
4

∣∣T MT
〉

× 〈p′
12 p

′
3, [l ′12s

′
12] j ′12(l

′
3s

′
3)I

′
3] j ′3(M ′ − m′

4),

(t ′12t
′
3)τ

′
3(M

′
T − mt ′

4 )
∣
∣

|p12 p3, [l12s12] j12(l3s3)I3] j3(M − m4),

(t12t3)τ3(MT − mt
4)
〉

× 〈q ′
4, (l

′
4s

′
4)I

′
4m

′
4, t

′
4m

t ′
4 |Ô4(k, Q)|q4,

× (l4s4)I4m4, t4m
t
4〉 (A.10)

Here we used identities from the spin projections: M =
m4 + m123, MT = mt

4 + mt
123, . . .. Now we expand the last

term in the above equation using Eq. (A.7), the momentum
conserving delta function can be rewritten using Eq. (A.2) as

δ(3)(k′
4 − k4 − Q) = δ(3)(q ′

4 − q4 − 3

4
Q) . (A.11)
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We further expand the last line of Eq. (A.10) by inserting
the solid angles q̂4, q̂

′
4 of the third particles’ momentum. The

state of the active nucleon is further decoupled into an orbital
and spin part which introduces summations of spin projec-
tions ms′

4 and ms
4. Then we use the result in Eq. (A.8), and

perform the integrations and summations corresponding to
the appropriate delta functions to arrive at the final form

〈M ′|Ô4(k, Q)|M〉 =
Kmax∑

K=0

K∑

κ=−K
∑

ms′
4 ms

4
mt

4

Õ4(m
s′
4 m

s
4m

t
4; Kκ; k, Q)ρ

Kκ;mt
4MT ,M ′M

ms′
4 m

s
4

(k, Q) ,

(A.12)

where we define the one-body (transition) density by sum-
ming over those quantum numbers that are not involved in
the interaction:

ρ
Kκ;mt

4MT ,M ′M
ms′

4 m
s
4

(k, Q)

=
∑

αα′

∫
dp12 p2

12 dp3 p2
3 dq4 q2

4

× δl ′12l12
δs′12s12

δ j ′12 j12
δt ′12t12

δl ′3l3 δI ′
3 I3

δ j ′3 j3δτ ′
3τ3

δM ′
T MT

×
∑

m4

〈
j ′3(M − m4), I

′
4M

′ − M + m4
∣∣J ′M ′〉

× 〈τ ′
3(MT − mt

4), t
′
4m

t
4

∣∣T ′MT
〉

× 〈 j3(M − m4), I4m4|JM〉
× 〈τ3(MT − mt

4), t4m
t
4

∣∣T MT
〉

× 〈l ′4(M ′ − M + m4 − ms′
4 ), s′

4m
s′
4

∣
∣I ′

4(M
′ − M + m4)

〉

× 〈l4(m4 − ms
4), s4m

s
4

∣∣I4m4
〉

×
∫

dq̂4Y
†
l ′4(M ′−M+m4−ms′

4 )
( ̂q4 + 3

4 Q)Yl4(m4−ms
4)

(q̂4)

×
Kmax∑

K=0

K∑

κ=−K

√
4π

2K + 1
|q4 − k

4 |KYKκ (
̂q4 − k

4 )

× ψ
†
α′(p12 p3

∣
∣q4 + 3

4 Q
∣
∣)ψα(p12 p3q4) (A.13)

where ̂a + b denotes the direction of a + b. This definition
separates the calculation of the operator from the calcula-
tion of the wave functions. Based on this definition, we can
define transition densities for arbitrary nuclear wave func-
tions that can then be combined with separately calculated
matrix elements of operators.

Appendix A.3 Two-body density

In this work, we take into account one- and two-nucleon oper-
ators contributing to elastic DM scattering. For the applica-

tion of two-nucleon operators, the relevant matrix element is
given by

〈 p′
12k

′
12|〈s′

12m
s′
12|〈t ′12m

t ′
12|

Ô12(k, Q)|t12m
t
12〉|s12m

s
12〉| p12k12〉

= δ(3)(k′
12 − k12 − Q)δmt ′

12m
t
12

O12(s
′
12t

′
12m

s′
12s12t12m

t
12; p′

12, p12; Q). (A.14)

For these operators, that generally contribute only at higher
orders, it will not be necessary to take boost corrections into
account. Therefore, we assume that the operator does not
have an explicit dependence on k12. The two-nucleon oper-
ator is usually represented in terms of partial-wave states,
which can be written as,

〈α′
12 p

′
12k

′
12|Ô12|α12 p12k12〉

= δmt ′
12m

t
12

δ(3)(k′
12 − k12 − Q)

×
∑

ms′
12m

s
12

〈
l12(m12 − ms

12), s12m
s
12

∣∣ j12m12
〉

× 〈l ′12(m
′
12 − ms′

12), s
′
12m

s′
12

∣∣ j ′12m
′
12

〉

×
∫

d p̂′
12d p̂12Y

†
l ′12(m

′
12−ms′

12)
( p̂′

12)Yl12(m12−ms
12)

( p̂12)

× O12(s
′
12t

′
12m

s′
12s12t12m

s
12m

t
12; p′

12, p12; Q)

≡ δmt ′
12m

t
12

δ(3)(k′
12 − k12 − Q)O

α′
12α12

12 (p′
12, p12; Q).

(A.15)

For the calculation of matrix elements of such an opera-
tor, it is advisable to use coordinates that separate the two-
nucleon cluster from a cluster of the remaining nucleons.
For an A = 4 system, such coordinates are usually labeled
as ‘2+2’ coordinates and are defined in Eq. (18). The scat-
tering process changes the momenta within the subcluster
(12) and the relative momentum q of this subcluster and the
remaining nucleons. Using Eq. (A.4) and Eq. (A.3) along
with

∑
i ki = −k, we can rewrite the delta function as,

δ(3)(k′
12 − k12 − Q) = δ(3)(q − q ′ + 1

2
Q) . (A.16)

We can use this delta function to integrate q when calculating
the matrix element. Now we can write the two-body matrix
element following the same procedure as one-body matrix
element and we get the factorization,

〈M ′|Ô12(q)|M〉
≡
∑

α′
12α12

∫
dp12 p

2
12dp′

12dp
′2
12 O

α′
12α12

12 (p′
12, p12; Q)

ρ
MT ,M ′,M
α′

12α12
(p′

12, p12; Q) (A.17)
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where we define the two-body (transition) density as:

ρ
MT ,M ′,M
α′

12α12
(p′

12 p12; Q)

=
∑

α′(α′
12)α(α12)

∑

mI

〈ImI , j34M − mI |JM〉

× 〈I ′mI + M ′ − M, j34M − mI
∣∣J ′M ′〉 δ j34 j

′
34

× 〈 j12m12, λ(mI − m12)|ImI 〉
× 〈 j ′12m

′
12, λ

′(M ′−M+mI−m′
12)
∣∣I ′(mI+M ′−M)

〉

× 〈t12m
t
12, t34(MT − mt

12)
∣
∣T MT

〉

× 〈t ′12m
t
12, t

′
34(MT − mt

12)
∣∣T ′MT

〉

×
∫

dq ′q ′2
∫

dq̂ ′
∫

dp′
34 p

′2
34 ψ

†
α′(p′

12 p
′
34q

′)

× ψα(p12 p
′
34

∣∣q ′ + 1
2 Q
∣∣)

× Y †
λ′(M ′−M+m′

I−m′
12)

(q̂ ′)Yλ(mI−m12)(
̂q ′ + 1

2 Q).

(A.18)

Appendix B Partial wave decomposition

In this section, we give the partial wave decomposition of

two-body operator O
α′

12α12
12 (p′

12, p12; Q) in (A.17). For nota-
tional convenience, we will drop the subscript (12) from now
on. We can decompose the operator into total-spin part and
isospin part

Oα′α
m′

χmχ
(p′, p; Q)

=
⎛

⎝
∞∑

ξ=0

∑

|mξ |≤ξ

〈
jm j , ξmξ

∣∣
∣ j ′m′

j

〉
O(spin)

(α′α)ξmξ ,m′
χmχ

⎞

⎠

×
⎛

⎝
2∑

τ=0

∑

|mτ |≤τ

〈
tmt , τmτ

∣∣t ′mt
〉O(iso)

(t ′t)τmτ

⎞

⎠ , (B.19)

with

O(spin)

(α′α)ξmξ ,m′
χmχ

=
√
ĵ l̂ ′ŝ′ξ̂

∑

λσ

⎛

⎝
j ξ j ′
l λ l ′
s σ s′

⎞

⎠

O((l ′l)λ,(s′s)σ )ξmξ ,m′
χmχ

(p′, p, Q) , (B.20)

and

O(iso)

(t ′t)τmτ
= τ̂

t̂ ′
∑

mt

〈
tmt , τmτ

∣∣t ′mt
〉 〈t ′mt |O(iso)|tmt 〉 ,

(B.21)

where mχ (m′
χ ) is the spin quantum number of the incoming

(outgoing) dark matter, x̂ ≡ 2x + 1, and

Table 1 Partial wave decomposition of isospin operator O(iso) as given
in Eq. (B.21) for non-zero channels

t ′ t τ mτ Õ(iso)

(t ′t)τmτ

0 0 0 0 −3

1 1 0 0 1

〈 j1m1, j2m2| jm〉 are the Clebsch–Gordan coefficients.
The partial wave decomposition of the isospin part is given
in Table 1.

The decomposed operator can be factorized in an angular
momentum- and spin-dependent parts

O((l ′l)λ,(s′s)σ )ξmξ ,m′
χmχ

(p′, p; Q)

≡
∑

mλmσ

〈
λmλ, σmσ

∣∣ξmξ

〉

×
∫

dθ ′
∫

dφ′
∫

dθ

∫
dφO(L)

(l ′l)λmλ
(θ ′, φ′, θ, φ)

× O(S)

(s′s)σmσ ,m′
χmχ

( p′, p; Q) , (B.22)

the angular momentum-dependent part is a function of
spherical harmonics while the spin-dependent part evaluates
the remaining matrix-element

O(L)

(l ′l)λmλ
(θ ′, φ′, θ, φ) ≡ λ̂

l̂ ′
∑

m′
lml

〈
lml , λmλ

∣∣l ′m′
l

〉

× Y ∗
l ′m′

l
(θ ′, φ′)Ylml (θ, φ) (B.23)

and

O(S)

(s′s)σmσ ,m′
χmχ

( p′, p; Q) ≡ σ̂

ŝ′
∑

m′
sms

〈
sms, σmσ

∣∣s′m′
s

〉

〈s′m′
sm

′
χ |O( p′, p; Q)|smsmχ 〉 . (B.24)

Conservation laws which simplify the angular-integration
can be applied depending on the spin matrix-elements of
the operator O(S)

(s′s)σmσ ,m′
χmχ

.

Appendix B.1 Isoscalar two-body correction

For two body operators, we can write the Jacobi momenta in
terms of nucleon momentum ki , k′

i as

p12 = k1 − k2

2
, p′

12 = k′
1 − k′

2

2
, (B.25)

q1 = Q
2

+ p12 − p′
12 , q2 = Q

2
− p12 + p′

12 . (B.26)

For scalar dark matter interactions, the spin matrix element

in (B.24) is proportional to |k| ≡
∣∣∣ p12 + α̃ p′

12 + β̃ Q
∣∣∣ and
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Table 2 Partial wave decomposition of spin operator in Eq. (B.32) for non-zero channels. The coefficients α, β, γ, δ are defined in Eq. (B.33)

s′ s σ mσ Õ(S)

(s′s)σmσ ,m′
χmχ

(p′, p′q, ϕ)

0 0 0 0 −2π(α − 2γ )

0 1 1 −1
√

6πβQ

0 1 1 1
√

6πβ∗Q
1 0 1 −1

√
2πβQ

1 0 1 1
√

2πβ∗Q
1 1 0 0 2

3 π(α − 2γ )

1 1 2 −2 2
√

5
3 πβ2

1 1 2 −1 4
√

5
3 πβδ

1 1 2 0 1
3

√
10π(α + 3δ2 − 3 |β|2 − 2γ − 3

4 Q
2)

1 1 2 1 −4
√

5
3 πβ∗δ

1 1 2 2 2
√

5
3 π(β∗)2

mξ = 0. In the structure |k|, azimuthal angles appear as
φp12

− φp′
12

(using Q = Qez). It is convenient to use the
following transformation

∫
dφp12

∫
dφp′

12
→
∫

dϕ

∫
d�, (B.27)

with ϕ = φp12
− φp′

12
,� = φp12

+φp′12
2 . This transformation

modifies the spherical harmonics in Eq. (B.23) as

Y ∗
l ′m′

l
(θ ′, φ′)Ylml (θ, φ)

→ Y ∗
l ′m′

l
(θ ′, 0)Ylml (θ, 0)eimlϕeimλ(

ϕ
2 −�) , (B.28)

where we used ml + mλ = m′
l and mξ = 0, thereby mλ =

−mσ . This allows us to absorb one integration in the spin
matrix-element

O((l ′l)λ,(s′s)σ )ξmξ ,m′
χmχ

(p′
12, p12, Q)

≡
∑

mλmσ

〈
λmλ, σmσ

∣
∣ξmξ

〉

×
∫

dθ ′
∫

dθ

∫
dϕ Õ(L)

(l ′l)λmλ
(θp′

12
, θp12 , ϕ)

× Õ(S)

(s′s)σmσ ,m′
χmχ

(p′
12, p12, Q, ϕ) , (B.29)

with

Õ(L)

(l ′l)λmλ
(θp′

12
, θp12 , ϕ)

≡ λ̂

l̂ ′
∑

m′
lml

〈
lml , λmλ

∣∣l ′m′
l

〉

× Y ∗
l ′m′

l
(θp′

12
, 0)Ylml (θp12 , 0)eimlϕ , (B.30)

Õ(S)

(s′s)σmσ ,m′
χmχ

(p′
12, p12, Q, ϕ)

≡ σ̂

ŝ′
∑

m′
sms

〈
sms, σmσ

∣∣s′m′
s

〉

∫
d�〈s′m′

sm
′
χ |O( p′

12, p12, Q)|smsmχ 〉eimσ (�−ϕ
2 )

.

(B.31)

For scalar dark matter scattering, the last expression is
either � independent or easy enough to perform the inte-
gration analytically. This significantly reduces the numerical
scaling and is eventually used for computation.

Here we perform the above decomposition for Diagram
1(c) given by Eq. (7). For simplicity, we are omitting the

overall m2
π

(
gA

2 fπ

)2
factor and the � independent denomina-

tor (q2
1+m2

π )(q2
2+m2

π ). The spin-momentum decomposition
for this operator

Õ(S)

(s′s)σmσ ,mχ
′mχ

(p′
12, p12, Q, ϕ)

= σ̂

ŝ′
∑

ms′ms

〈
sms, σmσ

∣∣s′m′
s

〉

×
∫

d�〈s′ms′ | − (σ 1 · q1)(σ 2 · q2)|sms〉eimσ (�−ϕ
2 )

(B.32)

is given in Table 2. The coefficient used in the table are

α = p2
12 + p′2

12 −
(
Q

2

)2

β = eiϕ p12 sin(θp12) − p′
12 sin θp′

12
,

γ = p12 p
′
12(cos θp12 cos θp′

12
+ cos ϕ sin θp12 sin θp′

12
) ,
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δ = p12 cos θp12 − p′
12 cos θp′

12
. (B.33)

The momenta q1,2 and the denominator are given by

q2
1,2 = α − 2γ ± δQ + 1

2
Q2

⇒ (q2
1 + m2

π )(q2
2 + m2

π )

=
(

α − 2γ + 1

2
Q2 + m2

π

)2

− δ2Q2 . (B.34)

This expression is spin independent. All these structures are
combined and convoluted with the density matrix which is
used to numerically calculate the scattering matrix elements.
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