001     1032182
005     20250203133216.0
024 7 _ |a 10.1021/jacsau.4c00718
|2 doi
024 7 _ |a 10.34734/FZJ-2024-06051
|2 datacite_doi
024 7 _ |a 39483243
|2 pmid
024 7 _ |a WOS:001323931400001
|2 WOS
037 _ _ |a FZJ-2024-06051
082 _ _ |a 540
100 1 _ |a Jäckering, Anna
|0 P:(DE-Juel1)178762
|b 0
245 _ _ |a From Bulk to Binding: Decoding the Entry of PET into Hydrolase Binding Pockets
260 _ _ |a Washington, DC
|c 2024
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734075846_7860
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plastic-degrading enzymes facilitate the biocatalyticrecycling of poly(ethylene terephthalate) (PET), a significantsynthetic polymer, and substantial progress has been made inutilizing PET hydrolases for industrial applications. To fully exploitthe potential of these enzymes, a deeper mechanistic understandingfollowed by targeted protein engineering is essential. Throughadvanced molecular dynamics simulations and free energy analysismethods, we elucidated the complete pathway from the initialbinding of two PET hydrolases�the thermophilic leaf-branchcompost cutinase (LCC) and polyester hydrolase 1 (PES-H1)�toan amorphous PET substrate, ultimately leading to a PET chainentering the active site in a hydrolyzable conformation. Ourfindings indicate that initial PET binding is nonspecific and drivenby polar and hydrophobic interactions. We demonstrate that the subsequent entry of PET into the active site can occur via one ofthree key pathways, identifying barriers related to both PET−PET and PET−enzyme interactions, as well as specific residueshighlighted through in silico and in vitro mutagenesis. These insights not only enhance our understanding of the mechanismsunderlying PET degradation and facilitate the development of targeted enzyme enhancement strategies but also provide a novelframework applicable to enzyme studies across various disciplines.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Göttsch, Frederike
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schäffler, Moritz
|0 P:(DE-Juel1)189064
|b 2
|u fzj
700 1 _ |a Doerr, Mark
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bornscheuer, Uwe T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wei, Ren
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 6
|e Corresponding author
773 _ _ |a 10.1021/jacsau.4c00718
|g Vol. 4, no. 10, p. 4000 - 4012
|0 PERI:(DE-600)3049543-X
|n 10
|p 4000 - 4012
|t JACS Au
|v 4
|y 2024
|x 2691-3704
856 4 _ |u https://juser.fz-juelich.de/record/1032182/files/j%C3%A4ckering-et-al-2024-from-bulk-to-binding-decoding-the-entry-of-pet-into-hydrolase-binding-pockets.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1032182
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178762
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)189064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JACS AU : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-23T14:01:24Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-23T14:01:24Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-01-23T14:01:24Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b JACS AU : 2022
|d 2024-12-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21