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Abstract
The essential role of magnetic materials in information technology and the corresponding energy
consumption of data storage centers is crucially underestimated in modern society. Saving energy
resources is the societal challenge of the 21st century. One of the leading scientific objectives is
finding ways to reduce energy consumption and make resource usage more efficient. This thesis
aims to shed light on possible contributions of materials science simulations towards a green IT
transformation by providing workflows and best-practice guidelines for high-throughput materials
screening tasks. An instance of such a screening task is the search for magnetic materials for the
next generation of storage and data processing devices. However, as the simulation process itself is
time-consuming, this thesis explores not only the material phase space but also the application op-
portunities for data science andmachine learning (ML) in thematerial’s property prediction process.
As a prime example of a complex magnetic material property, which is a limiting quantity when it
comes to methodological applicability, the critical temperature 𝑇𝑐 of existing magnetic simulation
data of Heusler alloys will be predicted using ML models. The capability and limitations of these
models will be analyzed and discussed. It is shown that it is possible to extract physical relations
and knowledge from trained ML models without any prior knowledge of the underlying physics and
system mechanics. Whether a Heusler compound has a 𝑇𝑐 high enough to be relevant for an appli-
cation in magnetic data storage and processing devices could be predicted with over 90 % accuracy
using lightweight ML model algorithms on typical materials science data set sizes. Beyond that, the
phenomenon of near half-metallicity in Heusler compounds was examined, including the successful
ML-based prediction of compounds displaying this property which were not known to be nearly half-
metallic before (L21 Co2HfIn, XA Mn2TaGe, and L21 Co2ScSn). This particular study used existing
first-principles data of full and inverse Heusler compound’s spin-polarized density of states, in order
to screen publicly available structural and magnetic ab initio data for compounds exhibiting near
half-metallic properties. The relations learned by the underlying ML models are discussed and com-
pared to a known physical model. It was determined that ML models have the capability to extend
and complement known physical models and relations when applied to existing (and potentially im-
perfect) data. Finally, large-scale high-throughput ultrathin film simulations of 3𝑑 transition metal
layers on face-centered cubic noble metal substrates were performed to understand the magnetic
properties of these magnetic multilayer films, which are predicted to represent well-suited host
platforms for room temperature stable Skyrmions and hence are considered candidate materials
for spintronics-based storage and data processing device applications. Tailored to high-throughput
ab initio workflows, a scalable method—that increased the overall convergence rate from 64.8 %
to 94.3 % and exhibited the potential to save up to 17 % of the computational time required, as
well as to reduce the number of needed ab initio relaxation steps to relax a multilayer film system
by up to 29 % in this systematic study, while being flexible enough also to be applicable to future
use cases—using the integration of batch learning into high-throughput workflows, was developed.
The use, restrictions, implementation, starting conditions, and benefits ofML-based techniques and
explainable artificial intelligence are discussed in depth in this thesis.
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Kurzzusammenfassung
Die wesentliche Rolle magnetischer Materialien in der Informationstechnologie und der damit ver-
bundene Energieverbrauch von Datenspeicherzentren wird in der modernen Gesellschaft entschei-
dend unterschätzt. Die Einsparung von Energieressourcen ist die Herausforderung des 21. Jahrhun-
derts und eines der wichtigsten wissenschaftlichen Ziele ist es, Wege zu finden, den Energiever-
brauch zu reduzieren und die Ressourcennutzung effizienter zu gestalten. Diese Arbeit zeigt mög-
liche Beiträge materialwissenschaftlicher Simulationen zu einer grünen IT-Transformation auf und
stellt Arbeitsabläufe für Material-Screening-Aufgaben mit hohem Durchsatz vor wie z.B. die Suche
nach magnetischen Materialien für die nächste Generation von Speicher- und Datenverarbeitungs-
geräten. Da solche Simulationen jedoch rechenzeitintensiv sind, untersucht diese Arbeit auch die
Anwendungsmöglichkeiten für Data Science und maschinelles Lernen (ML) bei der Vorhersage von
Materialeigenschaften. Als Paradebeispiel für eine komplexe magnetische Materialeigenschaft, die
eine limitierende Größe für die methodische Anwendbarkeit darstellt, wird die kritische Tempera-
tur 𝑇𝑐 aus vorhandenenmagnetischen Simulationsdaten von Heusler-Legierungenmit Hilfe vonML-
Modellen vorhergesagt, um imAnschluss dieMöglichkeiten undGrenzen dieserModelle zu analysie-
ren und diskutieren. Es wird gezeigt, dass esmöglich ist, physikalische Zusammenhänge und Erkennt-
nisse aus trainiertenML-Modellen zu extrahieren, ohne dass Vorkenntnisse der zugrunde liegenden
Physik des Systems erforderlich sind. So war es möglich vorherzusagen, ob eine Heusler-Verbindung
ein 𝑇𝑐 hat, das hoch genug ist, um für eine Anwendung in magnetischen Speichergeräten relevant
zu sein. Im präsentierten Beispiel war dies mit einer Genauigkeit von über 90 % möglich. Darüber
hinaus wurde auch das Phänomen der Halbmetallizität in Heusler-Verbindungen untersucht, ein-
schließlich der erfolgreichen ML-basierten Vorhersage von Materialien, die diese Eigenschaft an-
nähernd aufweisen und von denen bisher nicht bekannt war, dass sie nahezu halbmetallisch sind
(L21 Co2HfIn, XA Mn2TaGe und L21 Co2ScSn). In dieser Arbeit wurden vorhandene ab initio-Daten
von spinpolarisierten L21 und XA Heusler-Zustandsdichten verwendet, um Strukturen i.V.m. deren
magnetischen Dichtefunktionaltheorie (DFT) Daten nach Verbindungen mit halbmetallischen Eigen-
schaften zu durchsuchen. Die von den ML-Modellen gelernten Relationen werden diskutiert und
mit einem bekannten physikalischen Modell verglichen. Es wurde festgestellt, dass ML-Modelle in
der Lage sind, bekannte physikalische Modelle zu erweitern und zu ergänzen, wenn sie auf vorhan-
dene (und ggf. unvollkommene) Daten angewendet werden. Schließlich wurden Simulationen von
ultradünnen Schichten aus 3𝑑-Übergangsmetallen auf fcc-Edelmetallsubstraten durchgeführt, um
die magnetischen Eigenschaften dieser Mehrschichtfilme zu verstehen, die als gut geeignete Platt-
formen für raumtemperaturstabile Skyrmionen vorhergesagt wurden und daher als Kandidatenma-
terialien für Spintronik-basierte Speicheranwendungen gelten. In dieser Arbeit wurde eine auf sol-
che DFT Studien mit hohem Durchsatz zugeschnittene, skalierbare Methode entwickelt, die nicht
nur die Gesamtkonvergenzrate von 64.8 % auf 94.3 % verbesserte, sondern auch das Potenzial zeig-
te, bis zu 17 % der benötigten Rechenzeit einzusparen sowie die Anzahl der benötigten ab initio-
Relaxationsschritte zur Relaxation solcher Filmsysteme um bis zu 29 % zu reduzieren, während sie
flexibel genug ist, um auch für zukünftige Anwendungsfälle nutzbar zu sein—unter Verwendung der
Integration von Batch-Learning in ab initio-Workflows. Der Einsatz, die Einschränkungen, die Imple-
mentierung, die Ausgangsbedingungenunddie Vorteile vonML-basierten Technikenund erklärbarer
künstlicher Intelligenz werden in dieser Arbeit eingehend diskutiert.
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Chapter 1
Introduction

The communication technology sector, which includes numerous data centers across the globe, is
projected to account for over half of the world’s total energy consumption by 2030. This develop-
ment could also lead to a significant increase in greenhouse gas emissions, potentially contributing
up to 23 % of the global total. It is projected that this trend will continue. Hence, the necessity for
more efficient data-related technologies is obvious. [1] Green IT

Possible solutions for this technological transition process include the development of novel
data storage, transmission, and processing devices. Spin transport electronics (spintronics) based
devices that incorporate concepts like neuromorphic computing, Unconventional

Computing
reservoir computing, and racetrack

memory represent candidates for the in-demand application in future data utilization architectures.
Unconventional computing approaches have the potential to develop into low-power alternatives
to today’s computing, data processing, and data storage technologies. [2–8]

The aforementioned concepts are closely related to amagneticphenomenon knownas Skyrm-
ions. Skyrmions and

Spintronics
A Skyrmion is a quasi-particle characterized by a 2-dimensional topological magnetic texture.

The fact that Skyrmions can be manipulated (created, deleted, etc.) enables us to use them as in-
formation transmitters. In an experiment, Skyrmion-based neuromorphic computing was able to
achieve nearly the same accuracies on a recognition task as software-based trained machine learn-
ing (ML) algorithms. [4] One of the present challenges is the search for materials that exhibit special
magnetic properties, making them suitable hostmaterials and enabling the emergence of Skyrmions
at device operating temperatures.

This thesis aims to provide structured workflows using high-throughput first-principles simu-
lations and High-Throughput

First-Principles
Simulations

applyingML and data sciencemethods that can be used inmaterials screening processes
which are dedicated to determining and predicting promising material candidates with potential ap-
plication in the field of e.g. future magnetic storage and data processing devices. This is possible
as, given a particular application, the sought-after material properties are known by the technical
requirements beforehand. [3] In the context of high-throughput first-principles studies, it is clear
that the systematic electronic structure study of entire material classes using density-functional the-
ory (DFT) represents a computationally intensive endeavor. Such High-Throughput

Challenges
investigations can easily consume

millions of core hours. Beyond the computational time requirements, data management has rep-
resented an issue that prevented the large-scale success of systematic ab initio high-throughput
studies. The development of the Automated Interactive Infrastructure and Database for Computa-
tional Science (AiiDA) framework [9, 10] and DFT code-specific plugins [11] simplifies research data
handling and management.
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Beyond the complications inherent to high-throughput projects, there are also DFT-related
peculiarities to address when conducting large-scale electronic structure simulations. This includes
finding appropriate convergence parameters for the class of material being examined. Hence, be-
fore an actual systematic high-throughput study is conducted,Choice of

Convergence
Parameters

various test calculations need to be
performed in order to determine those convergence parameters representing a reasonable trade-
off between methodological accuracy and computational efficiency.

Another issue of high-throughput ab initio investigations is the fact that a DFT calculation
can fail to reach self-consistency. This is especially true if the inputs (structure, initial magnetic
moments, etc.) of the calculation setup have been chosen insufficiently. In DFT-based studies dedi-
cated to individual structures it is possible to hand-tune the inputs.Input Parameters

in
High-Throughput

DFT

Of course, this is not feasible in
a high-throughput setting. It is necessary, for large-scale studies, to automatize the generation of
appropriate input parameters. The established approach to tackle the problem of input parameter
optimization is trial-and-error-based. Unsurprisingly, this approach is neither systematic nor effi-
cient regarding the computing time associated with such a guess for the input parameters. In this
thesis, it was investigated whether this approach not only increased the overall success rate of the
high-throughput study conducted during this thesis, but the optimized inputs also caused the sub-
sequent DFT calculations to require fewer computational resources.Gaining Value

from Data
The data used to train the ML

models used for the prediction of the input parameters stems from the already converged results of
the study itself. This usage of data beyond an analysis at the end of the large-scale electronic struc-
ture study is still relatively uncommon when it comes to high-throughput DFT investigations. Com-
bining ML and data analytics methods with ab initio data has the capability to accelerate advances
and knowledge discovery in the field of materials science and solid-state physics. [12] Consolidation
of these methodologies is the approach that can be found in each results section of this thesis.

ML and data science is a broad and continuously growing field. Hence, it is impossible to
cover the related topics in their entirety in this thesis. Section 2.5 will discuss the embedding and
application ofML and data science techniques andmethodsMachine

Learning and
Data Science

used in or related to this project and the
scientific benefit added by combining ab initio simulation data with methods from these emerging
fields.

Beyond high-throughput applications, this thesis demonstrates thatML can complement first-
principles methods by enabling fast and efficient materials screening for Heusler compounds with
an application-relevant magnetic critical temperature even before an ab initio calculation was per-
formed. Usually, determining the critical temperature requires a two-step process combining a DFT
and a subsequent Monte CarloHalf-Metallicity

and Critical
Temperature

(MC) computation. Additionally, in a second project, it was possible
to utilize full and inverse Heusler DOS data collected by collaborators to screen publicly available
databases containing DFT results for half-metallic properties in the aforementioned compounds.
This screening revealed three compounds for which the property of near half-metallicity was previ-
ously unknown. Both Heusler-related projects highlight how ML techniques can assist in screening
for compounds with complex magnetic properties required to fulfill technological demands, even
on relatively small (a few hundred data points) but typical materials science data sets.

Using dedicated game-theory-basedmethods, it is possible to explain the prediction of anML
model and hence gain insights about hidden mechanisms and relations contained in the dataExplainable

Artificial
Intelligence

and
even extract physical insight from a trained model. This method is part of the continuously growing
Explainable Artificial Intelligence (XAI) field. The capability to retrieve relations and correlations
of physical quantities from trained ML models in the context of magnetic materials science data is
investigated in this thesis. [13]
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The underlyingmagnetic phenomena and the relevantmaterial properties related to the phe-
nomenawill be discussed in-depth in section 2.3. Themethodical requirements that were necessary
to achieve the results described in this thesis range from the field of theoretical solid-state Magnetic

Phenomena
physics

to applied data science techniques. Used frameworks, theoretical foundations of DFT, as well as the
detailed orientation of what materials design and materials screening is and which challenges this
process imposes will be introduced in the sections 2.1, 2.2, and 2.4.

During this thesis, three practical application cases have been examined. These cases are:

1. Predictive analysis of the Curie-Temperature (𝑇𝑐) of magnetic Heusler alloys using data from
the existing Jülich-Heusler-magnetic-database [14] (JuHemd). (Section 3.1)

2. Prediction of half-metallicity of Heusler alloys based on density of states (DOS) data as an
application of ML-assisted materials screening. (Section 3.2)

3. Simulation setup, computation, analysis of results, and predictive analysis of 2-dimensional
transition metal film systems on face-centered cubic (fcc) noble metal substrates and imple-
mentation of the DFT-integrated ML method. (Section 3.3)

All mentioned application cases follow essentially different approaches. However, each is a prime
example of the applicability and versatility of ML techniques in materials design challenges, ranging
fromML-assisted ab initio calculations andworkflows to predictivematerials and property discovery.
At the same time, some materials design tasks can be mainly carried out by ML models (see e.g.
[15]); other instances allowML to assist ab initiomethods in e.g. finding better initial starting points
or filtering ML-Assisted Ab

Initio
compounds, prior to a high-throughput study being conducted, for relevance. Hence,

scientists can useML to complement existingmethods, which allows us to profit from the synergistic
effects of both methods.
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This section is designed to give the reader an overview of the applied methods and the ter-
minology used during this thesis. It is clear that most readers do not have a background in data sci-
ence/data analytics andInterdisciplinary at the same time have extensive knowledge about theoretical condensed
matter physics, ab initio simulations, and magnetic phenomenons. As it is impossible to cover the
individual scientific disciplines in their entirety in a single thesis, a brief introductory section is dedi-
cated to each field. Formulas in this thesis are given in Hartree atomic units.

2.1 Data Driven Materials Design Process

Many modern technological devices (such as e.g. solid-state drives) rely heavily on components
specifically engineered to fulfill a very special purpose. Examples of such devices include resistors,
transistors, rechargeable batteries, sensors (including optical sensors), light-emitting diodes, and
many more. For some of these components to be constructed operational, there are sought-after
materials that have verySpecific Material

Properties
specific properties such as e.g. superconductivity, semi-conductivity, mag-

netic stability, low electrical resistance or half-metallicity. Famous examples of in-demandmaterials
are e.g. rare-earth metals, silicon, or conducting metals such as gold and copper.

It is a long way from a technical need for a material exhibiting a particular property to e.g.
the final manufactured novel electrical component or device. Data acquired using first-principles
simulations can assist in some cases in finding suitable materials for a given application.

2.1.1 Design Goal

At the beginning of the materials design process, there is a need for a material that meets special re-
quirements in terms of the material’s properties or the material’s behavior in certain environmental
conditions like e.g. high temperatures or external magnetic fields. These requirements are typically
application-driven and highly specific to the use case from which they arise.Application

Driven
This thesis aims to provide workflows and methods that can be used to search for materials

that meet the requirements of novel magnetic storage devices as for e.g. the racetrack memory.Workflows and
Tools

A
physically intuitive requirement for a novelmagnetic storage device is that the intrinsicmagnetism in
the storage material needs to be stable, at least at room temperature conditions. If this was not the
case, the storage would require permanent cooling or the information stored on the memory mate-
rial would get erased, which contradicts the purpose of a storage device. This requirement can be
interpreted as a need for a material-specific magnetic quantity, which is the critical temperatureCritical

Temperature
. A

detailed discussion of the interpretation of this quantity can be found in section 2.3.1. However, tak-
ing the room temperature as a requirement for the critical temperature would be too short-sighted.
Actually, temperatures in computers, data centers, server rooms, etc. are typically elevated com-
pared to the typical room temperature. Also, given that a loss of stored information would signifi-
cantly impact the material’s applicability, the requirement should include a buffer zone. The size of
this additional buffer zone should be determined by the following considerations:

1.Sufficiently High
𝑇𝑐

The stored information needs to be stored in a magnetic state which has a robust stability
against altering or decay even over time
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2. The accuracy of theoretical predictions of the critical temperature is limited, hence these in-
accuracies should be included in the buffer zone i.e. ab initiomethods are known to underes-
timate [16, 17] the critical temperature

3. While the critical temperature needs to be high enough, the buffer zone should not be chosen
too large, as this can cause materials with potential application to be overlooked

4. Modeling on top of data with e.g. ML modeling can introduce additional errors on top of
systematic errors already contained in the data

Taking into account these reasons and starting from room temperature of about 290 K a require-
ment for a critical temperature of about 400 − 500 K can be expressed for the use case of a novel
reliable magnetic storage material which does not require external permanent cooling, including
the discussed buffer zone. [18]

Generally speaking, more specific requirements emerge for more dedicated devices as e.g.
the mentioned racetrack memory. More general requirements could include:

• A certain electric conductivity type

• Presence of Dzyaloshinskii–Moriya interaction [19, 20]

• Certain magnetic moment

• Certain magnetic ordering

• Magnetocrystalline anisotropy below/above a certain threshold [21, 22]

2.1.2 Data Requirements

As the name already suggests, in the data-driven materials design process, data plays an essential
role. However, it is clear that the mere fact that data is accumulated during a research project is not
enough to justify the label “Data-Driven”, but rather the continual use of data that has been accumu-
lated to gain additional insights and subsequently accelerate materials discovery which includes the
utilization of data-based modeling opportunities stemming from the field of ML. The data-driven
scientific approach has been called the “fourth scientific paradigm” [23, 24] Fourth Scientific

Paradigm
besides experiments,

classical laws (mathematical expressions), and simulations. This additional paradigm relies heavily
on research data analysis and pattern discovery. This also mandates that researchers validate the
different paradigms against each other on a regular basis. [25]

However, upholding established scientific standards and double-checking scientific results
with different approaches also implies that we think about the data itself and our requirements in
terms of conventions on how to ensure data quality Data Qualityand the critical use of data. This thought process
gives rise to the following requirements:

Data Consistency

Data consistency represents the issue of comparability of different data points inside a single data
set. Data inconsistencies can arise from simulation data if e.g. different data points were computed
using different methods, approximations, code versions, Inconsistenciesor boundary conditions. Data inconsisten-
cies also might arise after the data collection from defective data transmission and incorrect data
processing. [26]

2.1 Data Driven Materials Design Process 7



Data Uniqueness

Data uniqueness addresses the fact that data can sometimes contain duplicates. Duplicates in a data
set can bewanted (e.g. when observations are counted and a certain event occurredmultiple times)
or unwanted. Suppose there are unwanted duplicates in the data set. In that case, removing them
before any modeling is done is desirable, as they can reduce the performance of the modeling itself.

Near Duplicates However, while true duplicates are easy to remove, this can be more difficult for near duplicates
depending on the nature of the data set. [26, 27]

Data Coverage

Data coverage addresses the issue of how much of the whole phase space the given data covers.
Typically, data coverage is an issue for small data sets in a much larger context of possible other data
points. Coverage can hinder us from drawing generalizable conclusions from data sets when our
coverage is not representativeRepresentative enough for the whole phase space. [26]

Data Accuracy

Data accuracy raises the question, “Are the individual data points correct?”. The answer to this
question requires a comparison to some type of other external sourceExternal Sources or reference. It is obvious
that data accuracy represents an issue for experimental data due to the error that arises inherently
from the measurements. Despite that, data accuracy is also important when examining simulation
data, even though the errors encountered in a simulation environment are more systematic as they
naturally arise from approximations that are applied within the corresponding simulation method.
Such systematic errors can emerge from something as simple as the discretization of a problem.
However, considerations should be made before collecting the data if the chosen computational
method is suitableSuitable Methods to generate accurate data and information in the given research context. [26]

Source Trustworthiness

In any case, in which the data used for a research project is not collected and used in one place,
the integrityIntegrity has to be questioned, and the trustworthiness of the source has to be evaluated and
discussed. It is imperative not to use data for research projects that might have been altered or
manipulated. [26]

Modeling Prerequisites

Besides assuring data quality and integrity, we need to consider the data’s predictive valuePredictive Value . This is es-
pecially crucial when choosing descriptors fromour data set tomodel a target quantity. There are dif-
ferent ways to explore the predictive capabilities of descriptors in relation to the target quantities be-
forehand, such as e.g. the statistical correlation and the ML-based predictive power score. [28, 29]
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Additionally, features should not only be selected Feature Selectionbased on their capability to predict the tar-
get quantity, but also according to their availability. Assessing the added value that originates from
predicting the target quantity using a given set of features is essential for an impact and meaningful
research project.

2.2 Density-Functional Theory1

The investigation of materials in the materials design process requires tackling many-electron sys-
tems. Commonly this is done by setting up the Schrödinger equation as in equation (2.1). [31]

𝐻̂ |𝛹⟩ = 𝐸 |𝛹⟩ (2.1)

Solving the Schrödinger
Equation

Schrödinger equation leads to the state |𝛹⟩ of the investigated system. Solving this
equation analytically is impossible, even for a single helium atom with only two electrons i.e. three
particles, without applying any approximations or restrictions. Hence, solving the Schrödinger equa-
tion for elemental He imposes challenges similar to the classical three-body problem. Classical

Three-Body
Problem

However, the
dimension of the problem to solve with the quantum mechanical Schrödinger equation for𝑁 parti-
cles, assuming each particle can be described by 𝑘 independent numbers—whichmight include spin,
position, etc.—is given by 𝑘𝑁 at a single point. Grid discretization of the problem on a 𝑛 × 𝑛 × 𝑛
3-dimensional grid leads to a computational task with the dimension of (𝑛3)𝑘𝑁

for the many-body
system’s state. This example illustrates that solving the Schrödinger equation analytically is com-
putationally extremely expensive for a real-world problem. Hence, different approximations and
approaches are used to reduce the computational effort in investigating quantummechanical many-
body systems. [32] The established approach to electronic structure computations is Density

Functional
Theory

DFT. DFT de-
scribes many-body systems by their electron density. This reduces the degrees of freedom from at
least three spatial degrees of freedom per electron—which is required to set up the corresponding
wave function—to three spatial degrees of freedom in total. Hence, the electronic charge density
is described as a function of the spatial coordinates 𝑛(𝒓). Charge Density

𝑛(𝒓)
[33] Including the spin as an additional

degree of freedom to describemagnetic quantummechanical systems adds another dependent vari-
able to each individual electron. The achieved shrinkage in degrees of freedom reduces the required
memory to compute the many-body problem to a controllable size in comparison to computing the
wave function directly. The possibility to describe a many-body system using the corresponding
electronic charge density originates from the Hohenberg-Kohn (HK) theorem. [32, 34]

2.2.1 Hohenberg-Kohn Theorem

The quantum mechanical many-body Hamiltonian 𝐻̂ contains contributions of the kinetic energy
of the many-body systems atom cores and electrons and the acting Coulomb interaction potential.
The different contributions to the Hamiltonian are summarized in equation (2.2). By convention,
in the following equations, capital letters as e.g. 𝑅 and 𝑀 denote the corresponding atom core’s
positions and masses, while the spatial positions of the electrons are denoted by the vectors 𝒓. The
corresponding indices distinguish the different atom cores and electrons.

1 The content of the sections 2.2 to 2.2.3 is based on a corresponding part from my master’s thesis and has been
edited from this original version to match the scope of this thesis. [30]
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𝐻̂ = − ∑
𝑖

1
2∇2

𝒓𝑖
− ∑

𝑘

1
2𝑀𝑘
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+ 1
2

⎛⎜
⎝

∑
𝑖≠𝑗

1
|𝒓𝑖 − 𝒓𝑗|

+ ∑
𝑘≠𝑙

1
|𝑹𝑘 − 𝑹𝑙|

⎞⎟
⎠

− ∑
𝑖,𝑘

1
|𝒓𝑖 − 𝑹𝑘| (2.2)

Assuming fixed nuclei reduces the core-core interaction as well as the kinetic energy contribution
to a constant energy 𝐸𝑁 . The electron-core Coulomb interaction part can be written as a potential
depending on the electron positions using the same assumptions. This is summarized as a sum of
𝑉ext (𝒓𝑖) contributions in equation (2.3). Generally, the term 𝑉ext (𝒓𝑖)𝑉ext (𝒓𝑖) summarizes all contributions
which act on the electron system besides the electrons themselves.

𝐻̂𝑒 = − ∑
𝑖

1
2∇2

𝒓𝑖
+ 1

2 ∑
𝑖≠𝑗

1
|𝒓𝑖 − 𝒓𝑗|

+ ∑
𝑖

𝑉ext (𝒓𝑖) + 𝐸𝑁 (2.3)

Rewriting the electronic Hamiltonian in the way presented in equation (2.3) by assuming fixed atom
core positions, is also known as the Born-Oppenheimer approximation. [35]Born-

Oppenheimer
Approximation

However, the external
potentialmight also be spin-dependentwhen including other external potentials, such as an external
magnetic field.

The Schrödinger equation (see equation (2.1)) allows us to compute the ground-state wave
function 𝛹0. Knowing the ground-state wave function—which represents the probabilistic distribu-
tion of the electrons in the many-body system in the ground state—the electronic ground-state
charge density 𝑛0 (𝒓) can be derived. The HK theorem states that a unique external potential
𝑉ext (𝒓) can be found given exclusively the ground-state density. This potential again allows the
computation of the ground-state using the Schrödinger equation. The previously outlined relations
and dependencies are visualized in Figure 2.1. [34]

𝑛0(𝒓)

𝛹0 (𝒓) 𝑉ext(𝒓)

HK

Schrödinger Eq.

Figure 2.1: Schematic depiction of the HK theorem and the corresponding dependencies. The electronic
ground-state density is calculated from the ground-state wave function. The HK theorem’s
consequence is that a potential exists that determines the ground-state wave function is la-
beled accordingly. This potential is unique up to a constant shift. This depiction was adapted
from [30].

The first part of the HK theorem is given by theorem 1.

Theorem 1. “For any system of interacting particles in an external potential 𝑉ext(𝒓), the potential,
𝑉ext(𝒓) is determined uniquely, except for a constant, by the ground-state particle density 𝑛0(𝒓).”
Theorem taken from [36].
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Hence 𝑛0(𝒓)
Determines the
Many-Body
System

, according to the HK theorem, the ground-state density determines all properties of
the many-body system as the ground-state density fully determines the Hamiltonian besides a con-
stant this also holds for excited states. [36] This is, of course, also true for the energy of the many-
body system, as the second part of the HK theorem states. This second part is included as theorem 2.

Theorem 2. “A universal functional for the energy 𝐸HK [𝑛 (𝒓)] in terms of the density 𝑛(𝒓) can be
defined, valid for any external potential 𝑉ext(𝒓). For any particular 𝑉ext(𝒓), the exact ground-state
energy of the system is the global minimum value of this functional [while keeping the number of
interacting particles constant [34]], and the density 𝑛(𝒓) that minimizes the functional is the exact
ground-state density 𝑛0(𝒓).” Theorem taken from [36].

Therefore, knowing that the energy functional𝐸HK[𝑛(𝒓)] determines 𝐸HK[𝑛(𝒓)]the exact ground-state
energy as well as the exact ground-state density, this energy functional can be defined as a sum of
multiple functionals as shown in equation (2.4).

𝐸HK [𝑛(𝒓)] = 𝐹HK [𝑛(𝒓)] + ∫ 𝑉ext(𝒓)𝑛(𝒓) 𝑑3𝑟 + 𝐸𝑁 (2.4)

The functional 𝐹HK [𝑛(𝒓)] in equation (2.4) contains the electron-electron interactions as well as
the electronic kinetic energy contributions as shown in equation (2.5).

𝐹HK [𝑛(𝒓)] = ⟨𝜓 [𝑛(𝒓)] | ̂𝑇 + ̂𝑉𝑒𝑒 |𝜓 [𝑛(𝒓)]⟩ (2.5)

The functional 𝐸HK[𝑛(𝒓)] is commonly called the HK energy functional. [36]
As the proof of the HK theorem is well documented in the literature (see e.g. [36–38]) and goes
beyond the scope of this thesis, it is not provided here. The HK theorem is not limited to non-
magnetic and non-spin-polarized systems. However, in practice, the charge density is represented
by individual spin contributions. Collinear

Spin-Directions
In the case of collinear magnetic setups, the individual electronic

densities for the spin-up (↑) and spin-down (↓) combine to a total density as shown in equation (2.6).
𝑛(𝒓) = 𝑛(𝒓, ↑) + 𝑛(𝒓, ↓) (2.6)

By defining the electronic charge density in this way, only collinear magnetic configurations along a
single magnetic axis are allowed. This restriction can be lifted as discussed in [30, 39]. Furthermore,
this additional spin degree of freedom and e.g. potential external magnetic fields can be included
by defining the magnetization density as shown in equation (2.7).

𝑚(𝒓) = 𝑛(𝒓, ↑) − 𝑛(𝒓, ↓) (2.7)

Including the magnetization density into the energy functional, one obtains the functional from
equation (2.8).

𝐸HK [𝑛(𝒓), 𝑚(𝒓)] = 𝐸HK [𝑛(𝒓)] + ∫ 𝐵ext(𝒓)𝑚(𝒓) 𝑑𝑟3 (2.8)

Assuming that an external magnetic field does act on the spins but not on the orbital motion of the
electrons, it is possible to prove the HK theorem also for this functional. The additional expression
of the contribution originating from the external magnetic field is very similar to the external po-
tential and particle density contribution. Hence, the proof of the HK theorem in the presence of an
external magnetic field is analogous to the regular case and can, therefore, be extended tomagnetic
systems. Hohenberg-Kohn

for Magnetic
Systems

[37] However, the HK theorem states that an external potential 𝑉ext(𝒓) which determines
the ground-state of the quantum mechanical many-body system exists but not how to obtain it for
practical calculations.
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2.2.2 Kohn-Sham System

Approximations in many-body problems in physics often depend on the properties of the individual
problem. The Kohn-Sham (KS) approach does not rely on any system-specific properties. Kohn and
Sham first assumed that the exact ground-state density of an arbitrary system can be represented as
the ground-state density of an auxiliary system of the non-interacting particlesNon-Interacting

Auxiliary System
. The auxiliary system

is represented by a Hamiltonian, which contains only kinetic operator contributions and an effective
local potential 𝑉eff [𝑛(𝒓)] (𝒓) but no interaction terms. Hence, the Hamiltonian of the auxiliary sys-
tem is given by equation (2.9).

𝐻̂aux = −1
2∇2 + 𝑉eff(𝒓) (2.9)

The effective potential 𝑉eff [𝑛(𝒓)] (𝒓) contains the external potential 𝑉ext(𝒓) from equation (2.3),
the exchange-correlation (XC) potential, and the Hartree potential contribution. In the auxiliary sys-
tem of𝑁 independent electrons, the states are occupied according to the Pauli exclusion principle.
The particle density of the corresponding system is given by equation (2.10) while 𝜓𝑖(𝒓) denotes
the single electron states wave functions. [40]

𝑛(𝒓) =
𝑁

∑
𝑖

∣𝜓𝑖(𝒓)∣2 (2.10)

Summarizing the KS auxiliary system contributions, one obtains the KS energy functionalKS Energy
Functional

from equa-
tion (2.11) for the many-body system. This functional expresses the density-dependent energy func-
tional of the many-body system based on the KS auxiliary system. [40]

𝐸KS[𝑛(𝒓)] =𝑇𝑠[𝑛(𝒓)] + ∫ 𝑉ext(𝒓)𝑛(𝒓) 𝑑3𝑟

+ 𝐸Hart[𝑛(𝒓)] + 𝐸xc[𝑛(𝒓)] + 𝐸N (2.11)

The kinetic energy operator of the non-interacting electron system as a result of this simplifies to the
expression in equation (2.12) which also includes the density-based representation of the Hartree
energy contribution from equation (2.11).

𝑇𝑠 = 1
2

𝑁
∑
𝑖=1

∫ ∣∇𝜓𝑖(𝒓)∣2 𝑑3𝑟 𝐸Hart[𝑛(𝒓)] = 1
2 ∫ ∫ 𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′| 𝑑3𝑟 𝑑3𝑟′ (2.12)

The𝐸xc term from equation (2.11) contains the complex many-body contributions of exchange and
correlation and is—in practice—subject to approximations as it is not analytically known. Kohn and
Sham defined an effective Hamiltonian as included in equation (2.13).

𝐻̂KS = −1
2∇2 + 𝑉eff [𝑛(𝒓)] (𝒓) (2.13)

For this Hamiltonian, the effective KS potential 𝑉eff [𝑛(𝒓)] (𝒓) consists of multiple contributions, de-
pending on both the charge density 𝑛(𝒓) and explicitly on the vector 𝒓, as shown in equation (2.14),
while equation (2.15) represents the explicit contribution of the Hartree potential.

𝑉eff [𝑛(𝒓)](𝒓) = 𝑉ext(𝒓) + 𝛿𝐸Hart[𝑛(𝒓)]
𝛿𝑛(𝒓) + 𝛿𝐸xc[𝑛(𝒓)]

𝛿𝑛(𝒓) (2.14)
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𝑉Hart [𝑛(𝒓)] = 𝛿𝐸Hart[𝑛(𝒓)]
𝛿𝑛(𝒓) = ∫ 𝑛(𝒓′)

|𝒓 − 𝒓′| 𝑑3𝑟′ (2.15)

The resulting effective Hamiltonian Single Particle
Equations

can be used to solve the Schrödinger-like equations (2.16) which
are called KS equations and represent single particle equations. [40]

(𝐻KS − 𝜖𝑖)𝜓𝑖(𝒓) = 0 (2.16)

The solution to this eigenvalue problem in principle determines all properties of the many-body sys-
tem. In addition to the connection between external potential and ground state established by the
HK theorem, the KS approach links the real-world many-body system to the auxiliary system of in-
dependent electrons. This additional connection is depicted in Figure 2.2.
The depicted approach is an exact way to tackle the many-body Hamiltonian, besides the neces-
sary approximation of the Exchange-

Correlation
Potential
Approximation

XC potential. Different approximations for the XC potential include local-
density approximation (LDA), generalized gradient approximation (GGA), andhybrid functional-based
methods. With the KS approach, it is possible to compute the many-body particle density self-
consistently using the non-interacting particle system with the effective KS potential 𝑉eff . [36]

𝑛0(𝒓) 𝑛0(𝒓)

𝛹0 𝑉ext(𝒓) 𝜓𝑖=1,𝑁 𝑉eff [𝑛(𝒓)] (𝒓)

HK

KS

HK

Figure 2.2: Schematic depiction of the KS approach to many-body systems. Compared to Figure 2.1,
there is an additional auxiliary system (right) that is connected to themany-body system (left)
via the KS approach, which links themany-body ground state density to a non-interacting elec-
tron gas system with the same electronic density. The external potential from Figure 2.1 has
been substituted by the density-dependent effective KS potential in the KS approach. This
figure was adapted from [30].

KS and Spin DFT

Using two-component Pauli wave functions, the spin Magnetic
Systems

as an additional degree of freedom—enabling
the computation of magnetic systems—can be included a shown in equation (2.17).

𝝍𝑖(𝒓) = (𝜓𝑖,↑(𝒓)
𝜓𝑖,↓(𝒓)) (2.17)

Given this representation the particle density and the magnetization density are redefined as in the
equationswith the number (2.18) which are generalizations of the expressions in the equations (2.6)
and (2.7).

𝑛(𝒓) =
𝑁

∑
𝑖=1

∣𝝍𝑖(𝒓)∣2 𝒎(𝒓) =
𝑁

∑
𝑖=1

𝝍∗
𝑖(𝒓)𝜎̂𝝍𝑖(𝒓) (2.18)

In this case 𝜎̂ denotes the vector of Pauli spin matrices given by the expressions in equation (2.19).

𝜎̂ = 1
2 ((0 1

1 0) (0 −𝑖
𝑖 0 ) (1 0

0 −1))
𝑇

(2.19)
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Including external magnetic fields, themore general spin-dependent KS Hamiltonian shown in equa-
tion (2.20) as well as the corresponding single particle equations result analogously for magnetic
many-body systems. The following depiction of magnetism within DFT restricts to the description
of non-collinear magnetism.

𝐻̂𝜎
KS = −1

2∇2 + 𝑉eff [𝑛(𝒓)] (𝒓) + 𝜇𝐵 ̂𝜎𝑧 ⋅ 𝐵eff [𝑛(𝒓)] (𝒓) (𝐻𝜎
KS − 𝜖𝑖,𝜎)𝜓𝑖,𝜎(𝒓) = 0 (2.20)

Analogous to the KS effective potential, the effective magnetic field 𝐵eff(𝒓) and the corre-
sponding XC field contribution are given by the expression in the equation number 2.21.

𝐵eff [𝑛(𝒓)] (𝒓) = 𝐵xc [𝑛(𝒓)] (𝒓) + 𝐵ext(𝒓) 𝐵xc [𝑛(𝒓)] (𝒓) = 𝛿𝐸 [𝑛(𝒓), 𝒎(𝒓)]
𝛿𝒎(𝒓) (2.21)

In the absence of external magnetic fields, the XC field is the only spin-dependent contribution to
the effective KS Hamiltonian. The previously introduced formalism allows a calculation of electronic
particle densities given certain spin directions (e.g. spin-up or spin-down density) similar to as they
have been used in equation (2.6) as shown in equation (2.22). [39]

𝑛𝜎 =
𝑁

∑
𝑖=1

∣𝜓𝑖,𝜎(𝒓)∣2 (2.22)

2.2.3 Full-Potential Linearized Augmented Plane-Wave Method

Different methodologies have been developed from the theoretical foundations introduced in the
previous sections. While some of them include e.g. precomputed pseudopotentials and plane-wave
(PW) basis sets to model the system’s potential, there is a more dedicated method that uses the full
physical potentialFull Potential

Method
and a different augmented basis set close the atoms center positions. Thismethod

is called the Full-Potential Linearized Augmented Plane-Wave Method (FLAPW) method, which it-
self is based on the linearized augmented plane-wave (LAPW) method [41, 42] but combines the
augmented basis set with the full physical potential to model the Hamiltonian. The mentioned aug-
mented basis set describes an atomic-like modeled orbitalAtomic-Like

Orbitals in the
Muffin-Tin

Spheres

basis set for each atom in the system. A
spatial decomposition into muffin-tin spheres, representing the region around the individual atom
positions, and the interstitial region, representing the space between the muffin-tin spheres, is per-
formed. Within the muffin-tin spheres, a basis set that consists of atomic-like orbitals is used to
construct the wave function, while in the interstitial region, a plane-wave basis is used. Outside
these atomic orbitals—which are called muffin-tin spheres—there is an interstitial region, which
itself is modeled using a plane-wave basis set. The core application of the FLAPW method is the
electronic structureElectronic

Structure
computation of solid crystal structures. Periodic boundary conditions of the

lattice in the real space in solid crystals allow a mapping to the Brillouin zone (BZ) in the reciprocal
space of the Bloch vectors 𝒌 in which the wave function is expanded. [43] Besides the Bloch vectors,
wave functions in crystals typically depend on the band index and spin component. The band index
denotes that a wave function can be assigned to a certain energy band of the crystal. [44, 45]

LAPW Basis

Applying an augmented plane-wave basis set divides the space into atomic muffin-tin spheres and
interstitial regions. This spatial subdivision used in the FLAPW method is depicted in Figure 2.3. An
additional spatial region needs to be considered in the case of thin-film systems. For film systems, a
vacuum region is added outside the overall film thickness. [46]
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The spatial decomposition allows the computing of local and non-local potential expressions
in the different regions. This avoids the necessity to approximate the potential close to the atomic
nuclei using pseudo-potentials close to the nuclei. [44]

Helo Helo HeloHelo HeloHelo HeloHelo HeloHelo HeloHelo

Helo Helo HeloHelo HeloHelo HeloHelo HeloHelo HeloHelo

Helo Helo HeloHelo HeloHelo HeloHelo HeloHelo HeloHelo

Helo HeloHelo HeloHelo HeloHelo HeloHelo HeloHeloHelo Helo

Helo HeloHelo HeloHelo HeloHelo HeloHelo HeloHelo HeloHelo

Figure 2.3: Spatial subdivision of a crystal lattice using an augmented plane-wave basis. Each circle de-
picts the muffin-tin sphere of an individual atom in the crystal structure. The area not con-
tained in a circle is called the interstitial area.

The wave function 𝛹𝒌,𝜈(𝒓) expansion is given by the expression in equation (2.23).

𝛹𝜎
𝒌,𝜈(𝒓) = ∑

|𝑮+𝒌|≤𝐾max

𝑐𝑮,𝜎
𝒌,𝜈 𝜑𝜎

𝑮,𝒌(𝒓) (2.23)

Dependencies of the wave function include the Bloch vector 𝒌, the spatial position where the wave
function is evaluated 𝒓, the spin component 𝜎 as well as the band index 𝜈. equation (2.23) also in-
cludes the expansion coefficients 𝑐𝑮,𝜎

𝒌,𝜈 as well as the cutoff parameter𝐾max which determines the
size of the basis set based on which the wave function is constructed. For a given Bloch vector 𝒌 the
wave function is constructed using the basis vectors, which correspond to all reciprocal lattice vec-
tors𝑮which fulfill the condition |𝑮+𝒌| ≤ 𝐾max. The expression𝜑𝜎

𝑮,𝒌(𝒓) denotes the LAPW basis
functions consisting of both the plane-wave Plane-Wave and

Augmented Basis
Parts

part and the augmented contributions. The individual
contributions to the LAPW basis functions are shown in equation (2.24).

𝜑𝜎
𝑮,𝒌(𝒓) =

⎧{
⎨{⎩

1
√𝛺Cell

𝑒𝑖(𝒌+𝑮)⋅𝒓 interstitial region
∑
𝑙𝑚

(𝑎𝜇,𝑮,𝒌
𝑙𝑚,𝜎 𝑢𝜇

𝑙,𝜎(𝑟𝜇) + 𝑏𝜇,𝑮,𝒌
𝑙𝑚,𝜎 𝑢̇𝜇

𝑙,𝜎(𝑟𝜇)) 𝑌𝑙𝑚(𝒓𝜇) muffin-tin 𝜇 (2.24)

The coefficients 𝑎𝜇,𝑮,𝒌
𝑙𝑚,𝜎 and 𝑏𝜇,𝑮,𝒌

𝑙𝑚,𝜎 are used in the LAPW basis set to enforce the continuity of the
basis functions and their corresponding derivative at the system’s muffin-tin boundaries for both
spin components. The volume of the unit cell 𝛺Cell is included as a normalization factor for the
interstitial plane-wave basis used within the FLAPW method. The spherical harmonics 𝑌𝑙𝑚 in the
basis set inside themuffin-tin spherematch the spherical contribution of the physical potential. Also,
the radial contribution emerging from the radial solutions of the Schrödinger equation 𝑢𝜇

𝑙 (𝑟𝜇) is
part of the basis within the muffin-tin spheres. The radial contribution and the spherical harmonics
dependency on the position 𝒓𝜇 within the muffin-tin sphere 𝜇 emerges from the spatial localization
of the spheres. The appearance of both the normalized radial function 𝑢𝜇

𝑙 (𝑟𝜇) and the matching
energy derivative 𝑢̇𝜇

𝑙 (𝑟𝜇) is the reason for the linearity of the eigenvalue problemwithin the FLAPW
method.
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The sum ∑𝑙𝑚 abbreviates the summation ∑𝑙𝜇
max

𝑙=0 ∑𝑙
𝑚=−𝑙 where 𝑙𝜇max represents a cutoff

parameter which can be set for atoms of the same type prior to a calculation within the FLAPW
method. [44] To examine filmsFilm Systems surrounded by vacuum regions, it is possible to extend the LAPW
basis by additional basis functions for this distinct region. However, while during this thesis, different
concepts of the FLAPW method and implementations of the FLEUR code are used, the detailed
discussion of these concepts is not the goal of this thesis. Details on the theory of thin films and the
vacuum region within the FLAPW method can be found in e.g. [39, 46]. Also, details on the theory
of spin-orbit coupling (SOC) within the FLAPW method can be found in e.g. [47].SOC

Eigenvalue Problem in the FLAPW Method

As the LAPW basis set does not form an orthogonal basis set, the eigenvalue problem introduced in
equation (2.16) transforms to an eigenvalue problem which contains an overlap matrix. The wave
function corresponding to the—now spin-dependent—eigenvalue 𝜖𝜎

𝜈,𝒌 used in the FLAPW method
is given by a sum of basis functions, as shown in equation (2.25).

|𝜓𝜎
𝜈,𝒌⟩ = ∑

|𝑮+𝒌|≤𝐾max

𝑐𝑮,𝜎
𝒌,𝜈 |𝜑𝜎

𝑮,𝒌⟩ (2.25)

From the basis representation in equation (2.25) the Schrödinger equation can be written as equa-
tion (2.26).

𝐻̂ |𝜓𝜎
𝜈,𝒌⟩ = ∑

|𝑮+𝒌|≤𝐾max

𝑐𝑮,𝜎
𝒌,𝜈 𝐻̂ |𝜑𝜎

𝑮,𝒌⟩ = 𝜖𝜎
𝜈,𝒌 ∑

|𝑮+𝒌|≤𝐾max

𝑐𝑮,𝜎
𝒌,𝜈 |𝜑𝜎

𝑮,𝒌⟩ (2.26)

Multiplying equation (2.26) on the left side with one of the basis functions ⟨𝜑𝜎
𝑮′,𝒌| one ends up with

equation (2.27).

∑
|𝑮+𝒌|≤𝐾max

𝑐𝑮,𝜎
𝒌,𝜈 ⟨𝜑𝜎

𝑮′,𝒌| 𝐻̂ |𝜑𝜎
𝑮,𝒌⟩ = 𝜖𝜎

𝜈,𝒌 ∑
|𝑮+𝒌|≤𝐾max

𝑐𝑮,𝜎
𝒌,𝜈 ⟨𝜑𝜎

𝑮′,𝒌|𝜑𝜎
𝑮,𝒌⟩ (2.27)

The expression ⟨𝜑𝜎
𝑮′,𝒌|𝜑𝜎

𝑮,𝒌⟩ on the right side of the equation represents the overlap integral and
can be written as the overlap matrixOverlap Matrix 𝑆 𝑆. This notation results in the eigenvalue problem, as in equa-
tion (2.28).

(𝐻 − 𝜖𝜎
𝜈,𝒌𝑆) 𝒄 𝜎

𝒌,𝜈 = 0 (2.28)

In this case 𝒄 𝜎
𝒌,𝜈 represents the coefficient vector which contains the expansion coefficients of the

wave function |𝜓𝜎
𝒌,𝜈⟩ for all𝑮 which are included using the corresponding cutoff condition. As the

basis set has individual spatial contributions for the interstitial region and the muffin-tin spheres,
this is also the case for the Hamiltonian. The separation of the Hamiltonian is possible due to the
locality of the potential contribution. Details on this spatial separation can be found in [39, 44].

During this project, the FLEURFLEUR Code [48, 49] ab initio code developed in Jülich—based on the
FLAPW method—has been used in combination with the AiiDA framework [9, 10] which is used
to apply the previously described method on the scale of high-throughput studies and hence en-
ables large systematic materials screening studies. To use FLEUR within the AiiDA framework, both
the corresponding plugin [11] and the Materials Science Tools package [50] are required.
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2.2.4 Magnetism within the FLAPW Method

As magnetism is an essential material property in the context of materials discovery for spintronics,
a brief overview is given on how magnetic moments and states are evaluated in magnetic collinear
FLAPW Doubled

Computational
Effort

calculations. It should be mentioned that the computational effort required when moving
from a non-magnetic to a magnetic DFT calculation—assuming nothing else in the computational
setup changes—is doubled. [44]

Magnetic Moment

Computing the magnetic moment of an individual atom in FLAPW is closely linked to the represen-
tation of atoms by muffin-tin spheres. Using the magnetization density given by equation (2.7), Total Magnetic

Moment
the

magnetic moment of an individual atom 𝑚𝜇 is calculated by evaluating the integral over the space
occupied by the corresponding muffin-tin sphere. Hence, the 𝑁At atoms system total magnetic
moment is given by equation (2.29).

𝑀Tot = ∫
Interstitial

𝑚(𝒓) 𝑑3𝑟 +
𝑁At

∑
𝜇=1

𝑚𝜇 = ∫
Interstitial

𝑚(𝒓) 𝑑3𝑟 +
𝑁At

∑
𝜇=1

∫
MT 𝜇

𝑚(𝒓) 𝑑3𝑟 (2.29)

However, the term “total magnetic moment” within this thesis refers to the summation of local
atomic moments 𝑚𝜇, as shown on the right of equation (2.29), if not stated otherwise explicitly.
The expression 𝑀Tot on the left of equation (2.29) is referred to as total cell moment with regard
to the unit cell volume𝛺Cell and includes the interstitial contribution to the magnetic moment.

Magnetic Ordering

With the ability to calculate the magnetic moment of individual atoms using DFT, the possibility
to classify different magnetic states by their ordering arises. Regarding collinear magnetism, four
different categories can be clearly distinguished for atoms in crystal lattices:

1. Non-magnetic: Vanishing total magnetization, but all individual magnetic moments are van-
ishing.

2. Ferromagnetic (FM): All atomic magnetic moments in a lattice have the sign.

3. Ferrimagnetic: The total magnetization is not vanishing, and there are different signs for
atomic magnetic moments present.

4. Anti-ferromagnetic (AFM): The total magnetization is vanishing, while individual atoms have
non-zero magnetic moments.

The different classes of magnetic ordering are illustrated in Figure 2.4. There exist other classes of
magnetic ordering for non-collinear magnetic calculations such as e.g. spin-spirals Spin-Spirals. Such configura-
tions are examined in research dedicated particularly to these phenomenons with—most often—
hand-tuned calculation setups. Moreover, examining spin-spirals and related phenomenons re-
quires a non-collinear treatment of magnetism, which increases the computational cost associated
with such calculations. However, the high-throughput study presentedwithin this thesis is restricted
to collinear magnetic configurations.
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Figure 2.4: Illustration of different classes of magnetic ordering in the case of collinear magnetism. The
order in the figure is. FM (Top left), Ferrimagnetic (Top right), AFM (Lower left), and Non-
magnetic (Lower right). The length of an arrow indicates the magnitude of a magnetic mo-
ment, while the arrow’s orientation denotes the sign.
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2.2.5 Self-Consistent Field Loop

The effective KS single particle equations are solved iteratively—as the exact charge density of a sys-
tem is typically unknown, and hence the charge density describing the system’s properties appropri-
ately needs to be determined iteratively using an initially constructed starting density—until a given
convergence criteria Iterative Solvingconcerning the electronic ground state density 𝑛0(𝒓) is reached. Typically, it is
enforced that the distance between the input and output charge densities within an iteration should
be below a given threshold, as shown in equation (2.30). [51] The ℒ𝑝 norm included in equation
(2.30) is defined as in [52].

1
𝛺Cell

∣∣𝑛↑/↓
Out(𝒓) − 𝑛↑/↓

In (𝒓)∣∣
ℒ2(𝛺Cell)

< 𝛽 (2.30)

Typical values for the charge distance cutoff parameter 𝛽 range from 10−5 m e−

a3
0
to 10−3 m e−

a3
0
de-

pending on the required accuracy and the scale of the target quantity which is desired, with 𝑎0
denoting the Bohr radius. For instance, the magnetocrystalline anisotropy, which often is in the or-
der of 10 𝜇Ha per unit cell, will require a much stronger convergence criterion than the molecular
binding energy, which can be around the scale of 1 eV per binding. In principle, this discrepancy
of energy scales translates to the required convergence criterion. Convergence

Criterion Scale
A schematic self-consistent field

(SCF) loop is depicted in Figure 2.5.

Setup Initial
Charge Density 𝑛↑/↓

𝑖𝑛𝑖𝑡(𝒓)

Construct Effective
Kohn-Sham Potential

Solve Kohn-Sham
Single Particle Equations

Construct Charge
Density 𝑛↑/↓(𝒓)

Charge
Density Converged?

Systems Electronic
Ground State Density

Mixing 𝑛↑/↓
0 (𝒓) with

Previously Computed Densities

Yes

No

Figure 2.5: Depiction of a typical SCF loop in an ab initio calculation from the initial starting density to
the converged electronic ground state density. Figure inspired by [36].

There are different mixing schemes (e.g. straight linear and Broyden [53] to mention a few)
used with the FLAPW method which have all their own advantages and drawbacks which makes
them subject to change depending on the nature and difficulties of the computed system. Within
the FLEUR code, an implementation of a Kerker [51, 54] preconditioner is available. Deciding on the
mixing scheme is not the only choice at the beginning of an SCF loop. Also, cutoff parameters like the
mentioned𝐾max and 𝑙max from section 2.2.3 are set at this stage. Of course, an ab initio calculation
also requires an input structure to be provided. Based on the given structure, the reciprocal lattice
of 𝑘 points can be reduced based on existing lattice symmetries.

Typically, at the end of a successful ab initio calculation, not only the computed electronic
ground state density is stored, but the acquired density is also used to compute system properties
and provide them as additional calculation output.
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Structural Relaxation Loop in DFT

Performing a structural relaxationusingDFT embeds the previously discussed SCF loop in a relaxation
procedure, which again represents an iterative process as with each successful SCF calculation a set
of forces acting in the system on each atom is generated. These forces 𝐹𝑖,𝛼—while 𝑖 represents the
atom occupying site 𝑖 in the lattice and 𝛼 denotes the axis of the force—are then used to:
1. Determine if the structure is relaxed using a force threshold and the condition given by the
expression in equation (2.31).

2. Shift the atom position occupying site 𝑖 according to the force vector 𝑭𝑖.

max{𝑖,𝛼} (∣∣𝐹 New
𝑖,𝛼 − 𝐹 Prev

𝑖,𝛼 ∣∣
1
) < 𝐹Thres (2.31)

The definition from equation (2.31) uses the 𝑝-norm definition from equation (2.58). A scheme that
shows how the SCF loop is embedded into the relaxation procedure is shown in Figure 2.6.

Initial
Structure
Guess

Relaxation SCF Loop Converged
SCF?

Converged
Structure?

Structure,
Magnetism,
Energy, ...

YesYes

No

No

Figure 2.6: Schematic depiction of the relaxation procedure in FLAPW including the embedded SCF pro-
cedures starting from an initial structure guess and yielding an ab initio relaxed structure as
result of the workflow, besides other DFT typical outputs like e.g. magnetic moments and
properties, total energy and the possibility to determine electronic band structure and the
DOS. Figure adapted from [55].

Commonly, for force relaxations—being a non-linear optimization problem—there are exist-
ing implementations of a BFGS scheme to improve the relaxations’ convergence. [56–59] However,
for convergence stability reasons, BFGS is not activated by default but rather used as soon as the
force is reasonably low after an SCF loop. Typically, until this point is reached, a linear scheme is
applied.

2.2.6 Korringa-Kohn-Rostoker Method

The Korringa-Kohn-Rostoker (KKR)methodKorringa-Kohn-
Rostoker Method

[60, 61] is an approach to DFT based onGreen’s functions
(GF). Instead of diagonalizing a Hamiltonian, the Green’s function is found directly from the Kohn-
Sham Hamiltonian, employing multiple scattering theory. Within the KKRmethod, the full-potential
expansion around the atomic centers is typically used, which takes the full geometry of the crystal
structure into account, rather than using the concept of muffin-tin spheres as spacial separation. A
versatile open-source implementation of the KKR method is the JuKKR code. [62] The JuKKR code
is also linked to the AiiDA framework [9, 10] using the AiiDA-KKR [63] plugin and hence enables the
method’s application on a high-throughputHigh-Throughput scale.
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The Green’s function formulation of the KKRmethod has the advantage of an extensive range
of possible applications. [64] Non-standard features that are often more cumbersome to obtain in
wave function-based methods include:

• Disordered systems with, e.g. impurities and defects

• Transport properties as e.g. spin and anomalous Hall conductivities

• Magnetic response functions as e.g. spin-susceptibility in linear response

• Pair interaction parameters

• Magnetocrystalline anisotropy

The pair interaction parameters 𝐽𝑖𝑗, computed using the KKR method, are closely related to mag-
netic properties of the system as they map the electronic structure onto the classical Heisenberg
Hamiltonian as shown in equation (2.33). The 𝐽𝑖𝑗 are also called exchange coupling parameters, Exchange

Coupling
Parameters 𝐽𝑖𝑗

as
they couple two spins to each other in the Heisenberg model Hamiltonian. Exchange coupling pa-
rameters are computed using the local force theorem [65, 66]. In equation (2.32) the calculation of
the exchange coupling tensor ̂𝐽𝛼𝛼′

𝑖𝑗 is shown. This expression results from scattering theory and was
derived using linear response theory and not even assuming a collinear magnetic moment. [66–69]

̂𝐽𝛼𝛼′
𝑖𝑗 = − 1

𝜋 Im
⎛⎜⎜⎜
⎝

𝐸𝐹

∫
−∞

Tr (𝛥𝑉 𝛼
𝑖 𝐺𝑖→𝑗𝛥𝑉 𝛼′

𝑗 𝐺𝑗→𝑖) 𝑑𝐸
⎞⎟⎟⎟
⎠

(2.32)

In equation (2.32) 𝐸𝐹 denotes the Fermi energy, i.e. the energy at which the energetically highest
occupied state of a material is existent—at the temperature 𝑇 = 0 K. Furthermore, the GF 𝐺𝑖→𝑗
represents the propagation between the two sites 𝑖 and 𝑗 in the lattice, and 𝛥𝑉 𝛼

𝑖 denotes the po-
tential change caused by an infinitesimal rotation of magnetic moment at site 𝑖 to the axis 𝛼 while
𝛼 is given by the 𝒆𝑥, 𝒆𝑦, and 𝒆𝑧 unit vectors. [68, 69] Dzyaloshinskii-

Moriya
Interaction

The exchange coupling tensor allows us to
directly compute the pairwise exchange coupling parameter 𝐽𝑖𝑗 from the trace of the exchange cou-
pling tensor. Besides the exchange coupling constant, it is possible to acquire the elements of the
Dzyaloshinskii-Moriya vector based on this approach. [69]

2.3 Selected Magnetic Material Properties & Phenomenons

There are many magnetic phenomenons known in modern-day solid-state physics (e.g. spin-spirals,
Skyrmions, and superconductivity, to name a few). In fact, inmagnetism, phase changes Phase Changesofmaterials
can be observed, where a material’s magnetic configuration changes from one magnetic state to
another. [70] While some observed magnetic effects are only observable in very special conditions,
others shape materials such that their properties emerge through magnetic effects (as in the case
of e.g. half-metallicity). [71–77] This section serves as an introduction to effects that are either
observed or predicted during the course of this thesis or otherwise related to applications.
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2.3.1 Critical Temperature

A given material’s stable magnetic state can be subject to change as external parameters of the
material’s environment change. This can include magnetic phase changes from e.g. FM to non-
magnetic states. If the phase change can be associated with changing the material’s temperature,
then the temperature atwhich this phase change spontaneously occurs is called critical temperature.
In the special case of FM and AFM materials, which exhibit vanishing net magnetization given a
temperature rise, this critical temperatureCritical

Temperature
is also called Curie or Néel temperature, respectively. For

an FM system, this essentially means that after the critical temperature has been exceeded, the
net magnetic moment—which was present before—has vanished. Above the critical temperature,
the magnetic ordering in a solid crystal structure is lostMagnetic

Ordering
. The difference between the two states is

exemplary shown in Figure 2.7.

Figure 2.7: Exemplary visualization of an FM2D Isingmodel [78] below (left) and above (right) the critical
temperature. The pair exchange parameters have been chosen 𝐽𝑖𝑗 > 0 to enforce ferromag-
netism as initial ordering.

As shown in the classical Heisenberg model Hamiltonian, which can be used to describe mag-
netic configurations, from equation (2.33), the pair exchange coupling constant is directly related
to the Hamiltonian of the system. Also, the uniaxial anisotropy (𝐾Crys) of the crystal lattice can be
found in equation (2.33) which is responsible for e.g. the magnetocrystalline anisotropy energyMagnetocrys-

talline Anisotropy
Energy

as
𝐾Crys leads to an alignment of the spins within the lattice to be preferred to align the easy axis 𝛼.
𝒆𝛼,𝑖 denotes the unit vector in the direction of the easy axis 𝛼 at lattice site 𝑖. [79]

𝐻̂ = −1
2 ∑

𝑖𝑗
𝐽𝑖𝑗 (𝒆𝑖 ⋅ 𝒆𝑗) − 𝐾Crys ∑

𝑖
(𝒆𝛼,𝑖)

2
(2.33)

The Hamiltonian from equation (2.33) is also called the classical Heisenberg Hamiltonian in the ab-
sence of an external magnetic field. [80] Mapping from the quantum mechanical DFT electronic
structure to the classical Heisenberg Hamiltonian is a multiscale approach that allows the descrip-
tion of the magnetic order on a length scale, which would be infeasible with first-principles meth-
ods alone. This multi-step process and the required or acquired data in each step are depicted in
Figure 2.8. It is important to mention that the ab initio simulation is approximately just as computa-
tionally expensive as the MC algorithm.

2 Methods22



The accuracy of the determined 𝑇𝑐 using this method is rather accurate, as sources report
errors compared to experimental values of about 10 % to 15 %. [81, 82] The two simulation steps
required to determine 𝑇𝑐 are briefly described in the following.

Structure
Data

Ab Initio KKR-GF
Calculation

𝐽𝑖𝑗
Ground State
Magnetism

Monte Carlo
Simulation 𝑇𝑐

Step 1: DFT Step 2: MC

Figure 2.8: Schematic depiction of the steps in the ab initio-based determination of the critical temper-
ature. Cylinders depiction of input and output data of the different steps.

Simulation Step 1: Ab Initio KKR Calculation for the Exchange Coupling Constants

Given a crystal structure—which also might include impurities and other structural disorders—a
KKR calculation can be set up and performed until self-consistency is reached, as it was previously
described in section 2.2.5. This gives access to major system properties such as the ground state
magnetic moments and configuration, as well as the exchange coupling tensor ̂𝐽𝛼𝛼′

𝑖𝑗 for all lattice
sites 𝑖 and 𝑗 and the spin directions 𝛼 and 𝛼′. Pair Exchange

Coupling
Constants

Only the diagonal elements are required from the
exchange coupling tensor to compute the pair exchange coupling constants 𝐽𝑖𝑗 as equation (2.34)
relates the tensor to the exchange coupling parameters using its trace along the spin axes. [68]

𝐽𝑖𝑗 =
Tr ( ̂𝐽𝛼𝛼′

𝑖𝑗 )
3 (2.34)

Simulation Step 2: Monte Carlo

Using the DFT-originated 𝐽𝑖𝑗 parameters and structure, it is possible to compute the classical en-
ergy difference 𝛥𝐸 of a given lattice between two different states using a model similar to the
3-dimensional Ising lattice. For the MC-based approach, an initial spin setup of the lattice is ran-
domly chosen. From there, a randomly selected spin gets flipped Random Spin

Flip
based on a probabilistic method.

The acceptance probability 𝑃 (𝑖 → 𝑗) of a flipped state 𝑗 compared to the original state 𝑖 is given by
the expression from equation (2.35). [83–85]

𝑃 (𝑖 → 𝑗) =
⎧{
⎨{⎩

1 𝛥𝐸 < 0
𝑒− 𝛥𝐸

𝑘𝐵𝑇 𝛥𝐸 ≥ 0
(2.35)

While𝛥𝐸 is the energy of the new state subtracted by the Energy of the previous spin state as given
in equation (2.36). Hence, a new state is always accepted if it reduces the system’s energy given by
the model Hamiltonian. Temperature

Dependent
But if the overall energy increases, the probability is given by a function

dependent on the temperature and𝛥𝐸. [84]
𝛥𝐸 = 𝐸𝑗 − 𝐸𝑖 (2.36)

The amount of howmany iterations of spin-flips Number of Spin
Flips

are necessary vary depending on the inspected sys-
tem. However, the literature suggests about 105 to 106 flips per spin to find an equilibrium and then
use about 106 more steps for the averaging process. [86] For the computed system, it is necessary
to average over the performed steps to acquire the expressions shown in equation (2.37). [84]
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𝑎 = ⟨⎛⎜
⎝

1
𝑉

𝑁
∑

𝑖
𝜎𝑖⎞⎟

⎠

2

⟩
MC

𝑏 = ⟨∣ 1
𝑉

𝑁
∑

𝑖
𝜎𝑖∣⟩

2

MC
(2.37)

In equation (2.37) the variable 𝑉 denotes the volume of the lattice and 𝜎𝑖 denotes theMagnetic
Susceptibility

net spin of
the atom occupying the 𝑖th site in ourmodel system. Using this notation, themagnetic susceptibility
is given by equation (2.38). [84]

𝜒(𝑇 ) = 𝑉 𝑎 − 𝑏
𝑘𝐵𝑇 (2.38)

From equation (2.38) it is obvious that it is not enough to do the MC simulation once. It needs to be
done for every temperature stepMagnetic

Susceptibility
Peak

to determine themagnetic susceptibility with reasonable accuracy
for the given system. This temperature sampling gives sufficient resolution to search for the peak of
the magnetic susceptibility, as this peak marks the critical temperature 𝑇𝑐. [86]

Sources of Errors

Sources of errors in the determination of 𝑇𝑐 can include but are not limited to:

• DFT-based error as XC functional is an approximation. [82]

• Use of classical Heisenberg model. [82]

• The 𝐽𝑖𝑗 are assumed to be constant under temperature change. [82]

• Assumption of collinear spins in the Ising lattice.

Beyond these systematic error sources, additional numerical convergence issues of both the KKR-GF
ab initio calculation and the MC simulation can introduce additional errors.

2.3.2 Half-Metallicity

Given the presence of a magnetic material, it is possible that the ↑-spin part of a DOSDensity of States is exceeding
the Fermi energy 𝐸𝐹 while the ↓-spin lies below the Fermi level. Hence, one of both spins is con-
ducting while the other is not. In the following, this phenomenon and the resulting applications are
discussed.Fermi Level

Density of States

The DOS is a concept closely related to a material’s conductivity properties and is deeply rooted in
electronic structure theory. The DOS 𝜌(𝐸) represents a number of statesNumber of

States per Unit
Energy

at a certain energy range
inside a single unit cell’s volume 𝛺Cell and is defined using the delta distribution 𝛿(𝑥) [87] in an
integral over the BZ as in equation (2.39) while 𝜖𝜎

𝑛 (𝒌) denotes the state’s energy of the crystal for
every state with spin 𝜎. [36]

𝜌(𝐸) = 𝛺Cell
(2𝜋)3 ∑

𝑛,𝜎
∫

BZ

𝛿 (𝐸 − 𝜖𝜎
𝑛 (𝒌)) 𝑑𝑘3 (2.39)
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The DOS can be computed from ab initio calculations as each band’s energy for every spin and 𝒌 are
determined within DFT. By construction, the number of states below the Fermi level matches the
number of electrons𝑁𝑒− in the unit cell, as shown in equation (2.40). [88]

𝐸𝐹

∫
−∞

𝜌(𝐸) 𝑑𝐸 = 𝑁𝑒− (2.40)

The relation from equation (2.40) is intuitively clear, as in the ground state all states below the Fermi
energy 𝐸𝐹 are occupied by electrons. Besides the total DOS, the method of projected density of
states (PDOS) Projected DOSexists, which projects the DOS on e.g. atomic orbitals or the interstitial to learn which
atom, spatial region, or orbital contributes to the DOS at the different energy levels. This way, one
can not only learn about the system’s physical properties, but using PDOS, it is possible to understand
where they originate from. Projecting the DOS on the interstitial can give an insight into which
degree of localization Localizationthe electrons in the compound exhibit, as electrons in the interstitial tend to
be delocalized. Thus, classifying materials based on their conductivity properties is possible using
the DOS, which is discussed in the following.

Conductivity Classification

Given the DOS of a compound, it is possible to classify the conductivity in the material. This can be
done as the DOS contains information about the so-called valence and conduction bands. Valence
bands of a material are states entirely located below the Fermi level, while conduction bands are
located above. However, both band types can overlap; this concludes the fact that there exists no
band gap Band Gap(𝛥𝐸Band) which is the case for e.g. metals. A band gap is defined as a range of energy
values around the Fermi level where the DOS is zero; hence, no states exist within that gap.

Knowing the band gap between the valence and conduction band—in the non-magnetic
case—conductivity can be classified into conductors, semiconductors, and insulators. Conductors
do not have any band gap as both of the bands overlap. Semiconductors generally behave like insu-
lators at very low temperatures, but thermal excitations Thermal

Excitations
can cause electrons to occupy conduction

band states and hence give rise to conducting properties. Hence, semiconductors have a band gap
around the Fermi level, but it must not be as large as the band gap of insulators, which typically do
not exhibit any conductivity. Examples of all three conductivity types are shown in Figure 2.9. How-
ever, including magnetism and examining the DOS for both spin states individually, it is possible to
find a band gap in one spin channel and states (i.e. a non-zero DOS) in the other spin state of the
DOS. Suchmaterials are called half-metals Half-Metals. Half metals can either be semiconducting or insulating in
the non-conducting spin channel, depending on the band gap. Ideal half metals that are completely
spin-polarized are considered important to spintronics as they are able to utilize the capabilities of
spintronic devices entirely. [89]
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Figure 2.9: Exemplary DOS for one conductor (Ag top left), one semiconductor (Si top right) and one
insulator (NaCl lower) obtained from FLAPW calculations. The black curves show the corre-
sponding DOS, while the blue curve shows the PDOS, which originates from the states in the
interstitial of the muffin-tin spheres. The dotted line represents the Fermi level. The upper
half of each DOS plot shows the ↑-spin contribution. The lower half shows the ↓-spin contri-
bution as indicated by the arrows on top of each plot and the negative sign on the number
of states per eV on the x-axis on the right.
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2.3.3 Requirements for Skyrmions

One technological concept within spintronics is the racetrack memory. This particular application,
amongst others, builds on the magnetic phenomenon of magnetic domains. An example of such a
magnetic domain is the particle-like Skyrmion. To understand the emergence of Skyrmions, it is nec-
essary to include an antisymmetric exchange Antisymmetric

Exchange
term into the simplemodel Hamiltonian from equation

(2.33) and define the Dzyaloshinskii–Moriya vector𝑫𝑖𝑗 as shown in equation (2.41) by using the def-
inition of the exchange coupling tensor fromequation (2.32). The introduction of the Dzyaloshinskii–
Moriya vector is necessary as theHamiltonian fromequation (2.33) does not explain the stabilization
of Skyrmions Stabilization of

Skyrmions
and the Dzyaloshinskii–Moriya interaction, which emerges from the spin-orbit interac-

tion of the electrons, is needed to describe the phenomenon of stable Skyrmions. [68]

𝑫𝑖𝑗 = 1
2

⎛⎜⎜⎜
⎝

̂𝐽𝑦𝑧
𝑖𝑗 − ̂𝐽𝑧𝑦

𝑖𝑗
̂𝐽𝑥𝑧
𝑖𝑗 − ̂𝐽𝑧𝑥

𝑖𝑗
̂𝐽𝑥𝑦
𝑖𝑗 − ̂𝐽𝑦𝑥

𝑖𝑗

⎞⎟⎟⎟
⎠

(2.41)

Using the definition of the Dzyaloshinskii–Moriya vector from equation (2.41) the more general
model Hamiltonian from equation (2.42) can be defined. [69]

𝐻̂ = −1
2 ∑

𝑖𝑗
𝐽𝑖𝑗 (𝒆𝑖 ⋅ 𝒆𝑗) − 𝐾Crys ∑

𝑖
(𝒆𝛼,𝑖)

2 − ∑
𝑖𝑗

𝑫𝑖𝑗 ⋅ (𝒆𝑖 × 𝒆𝑗) (2.42)

Model Hamiltonian’s like the expression from equation (2.42) are used to model phenomenons like
spin-spirals Spin-Spiralsand Skyrmions. It is also obvious that 𝑫𝑖𝑗 acts as a driving force that favors a non-
collinear spin configuration rather than a collinear alignment, which is suggested by the exchange
coupling constants and the uniaxial anisotropy. Both effects together and their interplay as com-
peting interactions Competing

Effects
are the underlying reason for the emergence of magnetic phenomenons like

Skyrmions and spin-spirals. However, in any case, a stable magnetic configuration in the carrier ma-
terial to host such effects is required. Hence, the critical temperature also is directly relevant to the
existence of spin transport properties.

In the special case of 2-dimensional systems, one consequence of the Mermin-Wagner theo-
rem [90] is that there are no long-range magnetic orders and subsequently no magnetic phase tran-
sitions present for the isotropic Heisenberg model Mermin-Wagner

Theorem
at finite temperatures. The stabilization, in this

case, is prevented by thermal fluctuations. [90] This concludes that Skyrmions cannot be stabilized
in a system based on such a model Hamiltonian. Consequently the interplay of the Dzyaloshinskii–
Moriya interaction and the magnetocrystalline anisotropy energy play a crucial role in stabilizing
Skyrmions in thin film systems.
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2.4 Automated Interactive Infrastructure and Database for
Computational Science

The AiiDA frameworkAiiDA [9, 10] is an open-source package that serves as a code base and infrastructure
enforcing common standards for different materials science-related code plugins, including parsers,
workflows, and data handling tools. The framework ensures data provenance and provides high-
performance computingHigh-

Performance
Computing
Compatible

(HPC) plugins and interfaces that enable to run e.g. complex multi-layered
ab initio-based workflows on a high-throughput scale. AiiDA stores operations and data node—
including inputs and results—belonging to a workflow as a directed acyclic graph, which allows the
reconstruction of the entire workflow even if the calculation was performed by someone else and
were published in a database. Initializing and running an AiiDA workflow and a corresponding AiiDA
code plugin is done using a high-level PythonHigh-Level

Python Interface
-based interface which can be executed e.g. inside a

Jupyter Notebook. [9, 10, 91] The framework was developed following the pillars:

• Automation

• Data

• Environment

• Sharing

These pillars are also referred to as the ADES modelADES Model . [91] More details about the framework—
including information specific to the AiiDA-FLEUR plugin [11]—are discussed in the following sec-
tion.

2.4.1 Framework

The AiiDA framework allows developers to build up on the existing code base and classes while
providing the infrastructure for workflows and data managementWorkflow and

Data
Management

. In the AiiDA context, workflows
are Python programs that perform one or more computation steps, using their input to acquire the
desired output for which the workflow is designed. This includes quantities that require multiple
layers or steps of ab initio calculationsAb Initio

Calculation Steps
to determine them. This is the case for e.g. the relaxation of

a crystal structure.

The data provided as input to the workflows and retrieved as output along with metadata
regarding the calculations (e.g. on which machine and using which code version the workflow was
executed) is stored in nodes, which all have a unique identifier. The framework provides classes to
handle data (As e.g. structure data, user-specified inputs, calculations parameters, and retrieved
outputs) efficiently. This assists the setup of new—potentially more advanced—workflowsAdvanced

Workflows
, as the

infrastructure is versatile and reusable. Hence, existing workflows can also be incorporated into
more advanced workflows in a layered computation procedure. This concept finds full utilization
as the most basic workflow implemented in AiiDA-FLEUR is the standard SCF workflow, which is
performed as part of basically every other workflow at some point.

To interact with the AiiDA framework, the FLEUR code [48] requires the AiiDA-FLEUR [11, 92,
93] plugin and the corresponding parser [50] which parses the FLEUR input and output files into
Python readable dictionaries. [92]
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Also included in the AiiDA-FLEUR plugin are analysis and visualization tools for e.g. band struc-
tures, density of states, or the graph representing a workflow in AiiDA-FLEUR with all the individual
steps performed during the execution of the workflow. [92]

2.4.2 Workflows

Workflows available in AiiDA-FLEUR [11] which are relevant to the results presented in the results
section include the following functionalities:

• SCF run

• Equation of States (EOS)

• Inpgen execution

• Set up a magnetic film structure

• Relaxation

Otherworkflows computing spin-spirals, theDzyaloshinskii-Moriya interaction and themagnetocrys-
talline anisotropy energy exist. Furthermore, the inputs required by each workflow vary, and even
within a single workflow, multiple options exist for providing the necessary input to the workflow
defined in the code. This is discussed in detail in the documentation of the AiiDA-FLEUR plugin. [11]
it is possible to adapt existing workflows depending on the requirements. This can be necessary if:

1. There is additional output required which is not retrieved by the used workflow. (Could also
require parser changes)

2. The input type options do not match the available input data despite the existing input data
being sufficient to set up the calculations input.

3. It is desired to change an input parameter—which AiiDA-FLEUR currently determines in a
workflow—manually.

4. A step in the workflow can be skipped (e.g. as it is already available to the user starting the
workflow), but this optional functionality is missing.

In general, the adaptation Adaptable
Workflows

of aworkflowcanbe required as soon as additional functionality is needed.
If required, entirely newworkflows can also be set up to provide functionality beyond the outputs of
existingworkflows. Of course, creating an entirely newworkflow can be a time-consuming endeavor.
It might be an overkill to set up a corresponding workflow for only a few calculations. Of course, a
potential high-throughput application mandates the setup of automation using a dedicated work-
flow. Hence, it should be considered if the workflow is used frequently enough to justify the time
and effort of creating a new workflow. During this thesis, high-throughput FLAPW calculations have
been performed. The workflow used mainly in this study is discussed in the following.

Create-Magnetic-Film-Workflow

The AiiDA-FLEUR [11] plugin contains a dedicated workflow to set up symmetric and non-symmetric
layered films. The possible input combinations for this workflow and the outputs are shown in Fig-
ure 2.10. [11, 92]
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Relax
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Properties
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Figure 2.10: Flowchart of different inputs which can be used to acquire the relaxation results, which
consist of the relaxed film structure and the magnetic configuration. Cylinders represent
the input and output data of the workflow.

The film relaxation workflow can be used in combination with the EOS workflow—and hence
requires the EOS workflow’s input parameters in this case—and also takes data-based distance
guesses.

Within AiiDA-FLEUR [11], there exists a routine that computes initial lattice constant guesses,
Data-based

Initial Lattice
Constant Guess

based on data stored in the database of the Materials Project [94], and stores them in a Python
dictionary for future use. Passing the routine for the initial guesses, a list of elements and subse-
quently all possible element pair combinations are determined and—using the Materials Project
Application Programming Interface (API)—a request for all bond lengths stored in the database for
each elemental pair combination is sent, one after the other. At the end of a single API request, the
bond lengths obtained are averaged, and the average is then stored for this element combination
before the next request is sent. Hence, in the dictionary output of the routine, each combination
of elements 𝑋 and 𝑌 have a mean bond length stored with them 𝑎𝑋𝑌

Guess which can be used as a
data-based initial guess for the starting point of the EOS and relaxation workflows. [11, 55, 92]

The Create-Magnetic-Film workflow in AiiDA-FLEUR [11] can work with either the outputs of
an EOS workflow or perform the EOS computation at the beginning of the film relaxation workflow.
An EOS workflow computes the bulk lattice constant of the film substrate layers. An initial guess
of the lattice constant 𝑎𝑆𝑢𝑏𝑆𝑢𝑏

Guess taken from the Materials Project [94] distance guesses dictionary is
then subsequently scaled as shown in equation (2.43). [55]

𝑎𝑛 = (0.9025 + 0.005𝑛) 𝑎𝑆𝑢𝑏𝑆𝑢𝑏
Guess (2.43)

While restricting 𝑛 to fulfill 0 ≤ 𝑛 ≤ 39. ThisEOS Sampling results in a discrete sampling of scaled lattice constants
ranging from 90 % to about 110 % in relation to the initial lattice constant guess. However, perform-
ing the EOS evaluation for every workflow started is unnecessary. The requirement to perform the
EOS evaluation vanishes once each substrate’s EOS has been evaluated.

2 Methods30



As—using the discretization discussed for equation (2.43)—with each EOS evaluation, 40 indi-
vidual SCF calculations are performed, and the corresponding total energy𝐸𝑛 of the bulk substrate
system is evaluated every time the workflow is executed. From this point on, it is possible to recycle
previously performed EOS computations (See Figure 2.10 second input option from above) when
submitting a film relaxation workflow. The film substrate will be set up using the substrate lattice
constant 𝑎𝑛, which minimizes 𝐸𝑛. However, suppose the supposed minimum determined by the
workflow is located at the smallest or largest scaled lattice constant. In that case, it is possible that
this scaling indeed does not represent a minimum of the total energy but rather the lowest energy
within the given interval. If so, the sampling scale should be reevaluated and adjusted to deter-
mine a suitable lattice constant for the subsequent calculations. The input parameters for the EOS
workflow specify e.g. the sampling and scaling of the initial lattice constant guess. [55, 92]

All steps of the AiiDA-FLEUR [11] film relaxation workflow are shown in Figure 2.11.

CreateMagneticWC

(EOS) Film Setup Relaxation SCF Calculation Converged
SCF?

Converged
Relax?

Structure
and

Magnetism

YesYes

No

No

Figure 2.11: Flowchart of the individual steps which are performed after starting the film relaxationwork
chain. As the EOS step’s necessity depends on the fact that the previous EOS output of the
chosen substrate is available, the step is put in brackets as it might not be required. The re-
laxation workflow from Figure 2.6 is fully incorporated into the AiiDA-FLEUR film relaxation
workflow. The cylinder shape represents the output resulting from the AiiDA-FLEUR work-
flow. Depiction adapted from [55].

Unfortunately, not every film relaxation succeeds. Hence, in practice, after cutoff parame-
ters for e.g. number of SCF iterations or relaxation steps are reached, the workflow will be stopped,
and the relaxation will be marked as unsuccessful. However, AiiDA-FLEUR [11] autonomously tries
to fix some common problems that arise during relaxations by e.g. restarting individual failed SCF
calculations or adjusting the film structure or the muffin-tin setup. [11, 92] The film setup follows a
structured procedure. First, after the EOS results are available, the layered film with a total number
of 𝑛𝐿𝑎𝑦 layers is completely set up using the substrate lattice constant from the EOS results and the
substrate element. This first step is shown on the left half of Figure 2.12. [11, 92] In the second step,
the user-specified layers are replaced with themagnetic layers, either on a single or on both sides of
the substrate. The interlayer distances Interlayer

Distances
(ILDs) between two neighboring layers are computed based

on the initial lattice constant guesses acquired from the Materials Project [94] bond length data. It
is established practice to scale the ILDs that lie in between the outermost magnetic layers and their
neighbors—with a number slightly smaller than one—as experience shows that they tend to com-
press towards the film center. For the high-throughput calculations performed during this thesis, a
factor of 0.95 has been used, however, also lower values are possible. [92] No further adjustments
to the film are performed before the relaxation procedure. [11, 92] Which layers undergo a relax-
ation (and in which direction) is subject to user input. A common choice is to relax the magnetic
layers only (and maybe the substrate interface layer) while exclusively relaxing the 𝑧-direction to
maintain the substrate-governed lattice. [92]

2.4 Automated Interactive Infrastructure and Database for Computational Science 31



𝑛𝐿𝑎𝑦 Substrate Film

Hell Hell

Hell Hell

Hell Hell

⋮ ⋮

Hell Hell

HellHell

Hell Hell

HellHell

⋮⋮

HellHell

HellHell

HellHell

⋮⋮

HellHell

Magnetic Layers

Interface Layer

Substrate Layers

Figure 2.12: Depiction of the individual steps in the structural setup procedure. The initial film setup
on the left uses only the substrate lattice constant and the substrate element. The second
step is depicted on the right, where a user-specified number of layers is replaced with the
elements specified for the magnetic layer. The interface layer can either belong to the sub-
strate or the magnetic layers defined by the user-provided structural setup specifications.
For visualization simplicity, the magnetic layers are colored in the same color, and a non-
symmetric film has been depicted. However, different elements can occupy each magnetic
layer, and symmetric films can be constructed this way. When writing this thesis, the work-
flow can set up films based on fcc and body-centered cubic substrate lattices.

2.4.3 Data Management

Research data management is becoming an increasingly urgent and crucial topic. Often, research
data is stored on local machines (data silos)Scientific Data

Silos
only accessible to a few researchers or even a single

individual—while others might not even be aware of the data’s existence. Publicly funded research
has to ensure that research results and corresponding data are examined, stored, and accessible to
as many people as possible so the accumulated data can be reused as often as possible in different
contexts to generate as much scientific value as possible from this data. [95, 96] To achieve this,
the FAIR principles [95] have been developed and established in the scientific community, which
focuses on designing software and data architectures in a way that sustainable data management

Sustainable Data
Management

is ensured. FAIR [95] denotes the four underlying principles, which are displayed in Figure 2.13.
Obviously, there are similarities between the ADES model mentioned in the introductory part of
section 2.4 and the FAIR principles. Hence, it is no surprise the AiiDA framework enables compliance
of data management with both ADES and FAIR.FAIR and ADES [9, 10, 93] For example, the AiiDA framework labels
each data node with a unique identifier (UUID) as well as each process with a process identifier
(PID) and references related nodes using these identifiers. Furthermore, the locally stored AiiDA
database is Structured Query Language (SQL) based, and data nodes can e.g. be user-describedwith
labels and descriptions. AiiDA also allows exporting and importing entire databases or segments as
compressed files. However, AiiDA also saves input and output calculations files in a structured file
repository. [93, 97]
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This ensures that data can be shared, reused and does not remain in a data silo with the
potential risk that the data’s existence will be forgotten and hence, the data can neither contribute
towards further scientific advances nor can be used as training data for future materials screening
or materials design studies. [95]

Findable
Data is labeled uniquely and persistent using

identifiers and is richly described using metadata
which is searchable and indexed in a database.

Accessible
Data and metadata are accessible using
available standardized communication
protocols and the assigned identifiers.

Interoperable
Data and metadata use a publicly avail-
able way of representing knowledge and
reference to related data and metadata.

Reusable

Data and metadata fulfill established community
standards, while maintaining data provenance
and are released with detailed description
under an indicated license for further usage.

Figure 2.13: Depiction of the FAIR principles. The content of this figure is based on [95].

2.4.4 General Workflow—Materials Science Data for Predictive Analysis Using
Machine Learning

Tackling a materials discovery or materials screening Materials
Screening

task is a multistep process, ranging from a pos-
sible technical application to specific predictions of eithermaterial properties or candidatematerials
related to the application case. A typical workflow for predictive materials discovery and screening
challenges is shown in Figure 2.14.

Technical
Application

Material Property
Requirements

Data
Requirements

(Ab Initio)
Simulations

Data Analysis
& Modeling

Model
Evaluation

Predictive
Modeling

Figure 2.14: Possible workflow from a technical requirement for amaterial exhibiting distinguished prop-
erties to predictive modeling.

This workflow also incorporates the previously discussed design goals and data requirements
steps, as well as the ab initio simulations. Starting from a technical application, an arising need for a
material having specific properties sets the goal of the materials design tasks even before any data
has been collected using computational simulations. In the particular case of this thesis, the compu-
tational step is carried out using first-principles (ab initio) calculations. Generally, ab initiomethods
are the method of choice for specific technical requirements like e.g. magnetic and conductivity
properties. However, while in general and interdisciplinary contexts Interdisciplinary

Contexts
a very similar methodology is

established and quite commonly found (e.g. in drug design [98]) using other simulation methods it
is an emerging methodology in the context of the growing field of high-throughput DFT studies. [92,
93, 99] In the context of these studies, ML models and techniques play a key role due to their ca-
pability to use the generated data to get additional insights and applications that can range beyond
the knowledge that can be acquired by analyzing the data.
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Also, beyond high-throughput applications, MLmodels are used in thematerials science com-
munity to address numerous challenges which include—but are not limited to—superconductivity
[100, 101], entropy changes [102], materials synthesis [103], band gap predictions [101] and topo-
logical states [101]. Besides the use of ML, the methodology of data miningData Mining has led to knowledge
discovery based on material science data. The discovery of material properties from data can also
lead to new application fields beyond the initial research objective. A famous example of such a
discovery represents the initial examination of polytetrafluoroethylene as a refrigerant, which then
became renowned for the material’s inherent anti-adhesive properties. [104, 105] Compared to
publications that include the use of ML models in the field of materials science and materials de-
sign, approaches and publications that interpret and explain the models and use XAI techniques are
not commonly found in the domain yet. [106] Summing up, it is worth mentioning that, despite
the rising popularity of ML methodologies within the scientific community, ML methods are typi-
cally not part of the physics curriculum, which is why—in the following—an overview is given over
techniques and methodologies which are relevant or related to the application cases discussed in
section 3.

2.5 Machine Learning and Data Science

ML-based methods are a rapidly growing field that influences many research areas and disciplines.
Hence, there exists a plurality of definitions for terms that have been used to this point in this thesis.
In the following, common definitions are included to establish a common understanding of what is
meant by which term.

Definition 1. Data scienceData Science refers to the methodology and interdisciplinary academic field that is
dedicated to systematically extracting and hence gaining knowledge from data. Data science is con-
nected to the field of data analytics, statistics, and the field of ML. [107]

Definition 2.Machine LearningMachine
Learning

(ML) is a research area that employs algorithms to derive models
from data in order to reproduce the laws underlying the relation between data and the information
contained in the data. [108, 109] Applications of ML models are not exclusive to a single scientific
area but rather diverse. [98, 99, 109] ML is considered a subbranch of the more general area of
artificial intelligence (AI). [109]

Defining AI itself is a much more peculiar task, as the definition raises philosophical ques-
tions on the nature of intelligence. [110] The question of what intelligence actually is when dealing
with computing machines solving tasks human-like goes back to the Turing testTuring Test . [111] Generally ac-
cepted is that AI applications aim to achieve the same—or even outperform—problem-solving and
decision-making capabilities of humans. This typically includes that these capabilities improve with
experience. [112, 113]

2.5.1 Machine Learning

Within ML, a plurality of models and methods exist to tackle different tasks, such as regression,
classification, clustering, and dimensionality reduction. Short descriptions of each of thementioned
model tasks are included in Figure 2.15. The applications outlined in this thesis focus on regression
and classification tasks, which align with the goal of predictive materials modeling and screening
materials. [114]
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Regression Task to relate a dependent variable
to a set of independent variables.

Classification
Task of assigning a class from a known set
of classes to a set of independent variables.

Clustering Task of grouping data points
by their underlying similarity.

Dimensionality
Reduction

Task of reducing the number of independent
variables while trying to represent the infor-
mation contained in all independent variables.

Figure 2.15: Depiction of different ML tasks with short descriptions of each task’s objective. The depen-
dent variable is also called the target quantity or predicted quantity. Independent variables
are often called features or descriptors as they act as individual features of a data point
describing the data point and hence determining the dependent variable for the model.
Typically, for regression tasks, the dependent variable is continuous. [115–117]

Naturally, as the focus lies on regression and classification Focus on
Regression and
Classification

, the ML methods used during the
course of this thesis represent applications of supervised learning. However, clustering and dimen-
sionality reduction are common tasks for unsupervised learning. For overview, the input and out-
put constellations for supervised learning and for semi-supervised and unsupervised learning ap-
proaches are shown in Fig 2.16. [117, 118]

Reinforcement learning is based on a training process that involves a repeated trial-and-error
procedure performed based on actions (e.g. decisions) performed by the model. When a model’s
trial is successful, the model receives a reward, based on some type of reward function, as denoted
in Figure 2.16 by the dashed arrow. Using a reward, the model will—in the long run, after multiple
cycles of trial-and-error—make decisions that maximize the reward function. [119] In the case of
supervised learning Supervised

Learning
, a metric is used in order to calculate an error that numerically expresses the

difference between the original—ground truth—labeling and the model’s label prediction. The goal
of supervised learning is to minimize a chosen loss function. Loss FunctionA loss functionℒ incorporates a metric
ℳ which measures the error of the model’s prediction, in comparison to the known ground-truth
labels, and potentially a so-called regularization term, depending on the used model. By conven-
tion, loss functions are defined in a way that a larger value of ℒ corresponds to a worse model
performance. Hence, the ML training process—which is an optimization problem of the model’s
parameters—always is given as a minimization task. Hence, the model parameters are optimized
so that they minimize the loss function on the training set. Different metrics that can be used in
loss functions and their properties are discussed in the following section about metrics. In general,
loss functions depend on the model’s prediction as well as the true labels, but can also depend on
model parameters and parameters that are related to a potential regularization term. The reward
function, which is used in reinforcement learning, is conceptually the opposite to the loss function,
as higher values of the reward function correspond to a better model performance. One ANNsclass of
models within ML are artificial neural networks (ANNs). ANNs are known to perform well on un-
structured non-tabular data like e.g. images, audio sequences, e-mails, and videos. [120–123]
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Figure 2.16: Schematic depiction of supervised, unsupervised, and reinforcement learning with the cor-
responding training inputs and model outputs. The term labels refers to entries for the
dependent variable. The bent arrow denotes the error that results from the model’s predic-
tion in combination with the fact that the ground truth values for the labels are known from
the training data set. The dashed bent arrow denotes the reward a reinforcement learning
model receives, based on a particular action.

Applicability of
ANNs However, when it comes to structured tabular data, ANNs are typically outperformed in terms

of performance and required computational time during model training by tree-based ensemble
models. [124–128] Within the family of ANN models, there exists a number of categories like
e.g. graph neural-networks, generative adversarial networks (GANs), convolutional neural networks
(CNNs), deep learningmodels, autoencoders, and foundationmodels like for example large language
models (LLMs). [129–131] Structuring the discussed relations within the area of AI, a possible visu-
alization as shown in Figure 2.17 can be compiled.

Artificial Intelligence

Machine Learning

Artificial Neural Networks

LLMs, CNNs, GANs, etc.

Figure 2.17: Depiction of the field of AI related to ML and neural network models. Each upper category
is a subclass of the field depicted in the category below. The field of AI forms the foundation
for all other ML techniques but also includes other topics and fields like e.g. robotics which
are beyond the scope of this thesis.
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Mathematical Interpretation of a Model

Consider a task where a single feature vector𝒙𝑖 is 𝑘-dimensional. Hence, the task has a number of 𝑘
features. For a data set of𝑁 data points, there exist corresponding labels 𝑦𝑖 ∀ 𝑖 ∈ [1, 𝑁]. Defining
a function that performs a mapping as shown in equation (2.44) can be defined. This function is
called predictor or estimator and corresponds to the model that maps the feature space onto the
label space. [132] Predictor

Function𝑓 ∶ ℝ𝑘 → ℝ (2.44)

In fact, the label space is likely much smaller than ℝ in application cases, especially for classification
tasks.

Model Choice and Hyperparameter Optimization

Besides the dependent variables, many models depend on a set of hyperparameters𝜣. Hence, the
predictor 𝑓𝜣(𝒙) will not only depend on the provided feature vector but also on a model-specific
hyperparameter vector. The hyperparameters Hyperparameters

as Model Input
are not a result of the learning process but rather are

required as input to the model before the beginning of the training process. [133] An example of a
typical hyperparameter would be the number of estimators combined within an ensemble model,
which are introduced in section 2.5.2.

The parameters that are trained during the learning process are model-specific. For example,
in a simple linear regression predictor 𝑓(𝑥)—for a single feature 𝑥—defined by equation (2.45), the
learned parameters are 𝑎 and 𝑏. Linear Regression

𝑓(𝑥) = 𝑎𝑥 + 𝑏 (2.45)

Due to the underlying simplicity, the classical linear regression does not have any hyperparameters.
Hence, the hyperparameter optimization step shown in Figure 2.18 can be skipped for this particular
model. From Figure 2.18 it also becomes apparent that the initial choice of features already influ-
ences the training process as well as the hyperparameter selection in general. Additionally, when
many features are available for a given task, a dimensionality-reducing feature selection is often per-
formed. It is important not to perform feature selection and learning on the same data set, as this
might lead to an additional feature selection bias. [134] Feature Selection

Bias
To determine hyperparameters, different strategies are common. The simplest method—

often referred to as the holdout method Holdout Method[135]—splits the available data into a training set and a
test set prior to model training. The test set is used after training the model using the training data
and different combinations of hyperparameters to compare the performance of different models.
However, this precludes any evaluation of the choice of hyperparameters with out-of-sample (OOS)
data, as the test data was involved in the process of determining the hyperparameters. Hence, it re-
mains unclear if the chosen hyperparameters are performing well on the test data set or generalize
well to other data sets. It is a better practice to use separate sets of data for the training process,
the model, the hyperparameter choice process, and the final evaluation to estimate the generaliza-
tion error. Generalization

Error
The process of transitioning from the holdout method to further splitting of the data is

depicted schematically in Figure 2.19. However, using a single dedicated validation set is only the
simplest—but also computationally fast—way to introduce a validation step. Validation StepA more sophisticated
approach is to use the technique of cross-validation (CV).
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Before splitting the data, it can be useful to randomize the entire data set to avoid certain
clusters being overly dominant in either set. Extreme clustering in the data set can be detrimental
to themodel’s performance and generalization abilities, as this can—in extreme cases—lead to cases
where the model has not learned a specific relation that might not be found in the test data but in
the training data due to clustering. Such a case can easily be imagined, looking at the fact that the
structural formula of the examined compound sorts some databases in materials science. This way,
the model would likely never encounter e.g. the Element Zn at a certain site in the compound if
one chose the last 20 % of the data set to be the test data set. Hence, some kind of randomization
has to be performed before splitting the data, which can either mean drawing the validation and
test set randomly from the entire data beforehand or randomizing the entire data set before the
data-splitting procedure.

Training

Labeled Data

Validation

Test

𝑓{𝜣}(𝒙)
ML Algorithm

𝑓𝜣Opt
(𝒙) Hyperparameter Optimization

Evaluation

𝒙 Selected Features

Figure 2.18: Depiction of the different stages
and data usage in ML model op-
timization procedures. 𝜣Opt is
chosen using a validation set. The
holdout method would merge
the hyperparameter optimization
and evaluation steps. Figure in-
spired by [133].

Training Set Test Set

Validation Set Test Set
Separation of Training & Validation Set

Figure 2.19: Depiction of data splitting using
the holdout method (top row) as
well as an additional validation
set (further splitting in the lower
row), where the available data is
split into training, validation and
test set.

In Figure 2.18 the notation 𝑓{𝜣}(𝒙) denotes the ML model, which is trained using the fea-
tures and labels from the training data set for a set of hyperparameter vectors {𝜣} while 𝑓𝜣Opt

(𝒙)
denotes the model with the best-found hyperparameter vector 𝜣Opt from the set of hyperparam-
eter vectors {𝜣}. There are different methods to search for appropriate hyperparameters in the
space of all possible combinations, which include grid search, random search [136], and Bayesian
optimization (BO) [137] based methods.Hyperparameter

Search Methods
However, while grid search samples the whole provided

hyperparameter space of combinations for choices of individual hyperparameters and hence will
always find the best-performing set of hyperparameters out of all combinations, simply sampling
all possible combinations is not an efficient approach. Random search algorithms, which sample
all possible combinations of hyperparameters a given number of times randomly, are known to be
more compute-time efficient than grid search approaches. [136] BO-based methods can improve
the computational efficiency in hyperparameter search even further than random search algorithms.
Using Gaussian processes, BO methods for hyperparameter optimization probabilistically estimate
the error when sampling the hyperparameter space. The next point chosen to be sampled by the
optimization algorithm will be the point in the hyperparameter space, with the largest probabilistic
uncertainty. Hence, the phase space of possible hyperparameters—with each additional sample—is
sampled systematically in regions where the algorithm has the least information about the perfor-
mance of the sample point’s associated hyperparameter combination in relation to other points.
This procedure is known to be scalable to large dimensions of hyperparameter vectors. [138, 139]
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Hence, depending on the dimensionality Computational
Efficiency

of the hyperparameter optimization problem as well as
the data size, random search as well as BO can be used to increase the computational efficiency in
finding adequate model parameters.

Bias-Variance Decomposition

Consider the data labels 𝒀True on which the model 𝑓𝜣Opt
(𝒙) was trained. Let us assume that

they may contain some Noisy Datarandom noise, but that they follow the true mapping 𝑓True(𝒙). Any in-
dividual label 𝑦𝑖 in 𝒀True is linked to 𝑓True(𝒙) by equation (2.46). Then, the error that arises by
approximating 𝑓True(𝒙) with the model 𝑓𝜣Opt

(𝒙) using an arbitrary loss function ℒ(𝒀𝐴, 𝒀𝐵), can
be expressed as in equation (2.47). The loss function must be symmetric, such that the relation
ℒ(𝒀𝐴, 𝒀𝐵) = ℒ(𝒀𝐵, 𝒀𝐴) is fulfilled. [140, 141] In the loss function, 𝒀𝐴 and 𝒀𝐵 each represent
a label vector of all labels from the according data set acquired by two different mappings 𝐴 and
𝐵. In the following, it is assumed that one of both mappings represents the true mapping (i.e. the
ground truth) of the data, and the other mapping is a model attempting to model the true mapping
based on the data.

𝑌 𝑖
True = 𝑓True(𝒙𝑖) + Noise (2.46)

𝔼 [ℒ (𝑓True(𝒙), 𝑓𝜣Opt
(𝒙))] = (2.47)

𝔼 [ℒ (𝑓True(𝒙), arg min
𝜇

(𝔼 [𝑓𝜣Opt
(𝒙) − 𝜇]))]

+ 𝔼 [ℒ (𝑓True(𝒙), arg min
𝜇

(𝔼 [𝑓𝜣Opt
(𝒙) − 𝜇])) − ℒ (𝑓True(𝒙), arg min

𝜇
(𝔼 [𝑓True(𝒙) − 𝜇]))]

+ 𝔼 [ℒ (𝑓True(𝒙), 𝑓𝜣Opt
(𝒙)) − ℒ (𝑓True(𝒙), arg min

𝜇
(𝔼 [𝑓𝜣Opt

(𝒙) − 𝜇]))]

𝔼 [𝑓(𝑥)] denotes the expected value of an arbitrary function 𝑓(𝑥). The very first term on
the right side of equation (2.47) represents the noise coming with the actual mapping 𝑓True(𝒙).
This error of the true data labels themselves is considered the irreducible error, Irreducible Erroras it is inherent
to the examined data, and no model prediction can systematically exceed the accuracy of the data
on which it has been trained on. The middle term on the right side of equation (2.47) represents
the squared bias between the true mapping 𝑓True(𝒙) and the model function 𝑓𝜣Opt

(𝒙). The bias
between these two mappings can be intuitively understood as the expectation value’s deviation
between both mappings. Of course, since the goal is that the model should be close to the actual
underlying mapping, it is desirable for the bias to be small. The last term can be interpreted as
the variance arising from the model’s prediction error. This error is not only model-dependent but
also is caused by the fact that only a finite amount of training data Finite Amount of

Training Data
is available. [140, 141] The

interplay between bias and variance terms visible in this particular decomposition is often called
bias-variance trade-off, as typically, to decrease the bias, it requires a more complex model. At the
same time, amore complexmodel also requiresmore training data to decrease themodel’s variance
to the level before the complexity was increased. Bias-variance

Trade-off
[142] A low-bias and low-variance model would

be considered ideal. Low-bias and high-variance situations are commonly referred to as overfitting,
while high-bias and low-variance constellations are typically described as underfitting. Overfitting &

Underfitting
Empirically,

the bias and variance of a model can be determined using in-sample 𝒀In and OOS 𝒀Out predictions.
The OOS predictions can be acquired using e.g. the test set that has not been used in the model
training and hyperparameter selection process.
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Given a loss function, ℒ(𝒀𝐴, 𝒀𝐵) bias and variance are approximately given by the expres-
sions in the equations (2.48) and (2.49). [141]

Bias ≈ ℒ(𝒀In, 𝒀True) + ℒ(𝒀Out, 𝒀True)
2 (2.48)

Variance ≈ ℒ(𝒀Out, 𝒀True) − ℒ(𝒀In, 𝒀True)
2 (2.49)

The loss function ℒ(𝒀Out, 𝒀True) does not only appear in the bias and variance terms in the equa-
tions (2.48) and (2.49), but also represents an estimate for the generalization error, as it evaluates
the model performance on unseen data. Hence, large values for the variance correlate with a large
generalization error, which indicates that the model is too complex, given the amount of used train-
ing data. In order to increase the generalization capabilities—while simultaneously reducing poten-
tialAvoiding

Overfitting
overfitting—of a model, the model complexity reduction is an option. This can be achieved by

either changing the model type entirely to a less complex one or by applying regularization. [142]
A depiction of the influence of bias and variance when training a model to hit a target in the center
and with a small spread in the hits is shown in Figure 2.20.
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Figure 2.20: Depiction of the effect of the bias and variance contribution to the result of the task of
hitting a target multiple times in the center. In subfigure (d), it can be seen that despite low
bias and low variance, a certain level of noise remains, which is why not all hits are perfectly
centered even in this case.

Regularization

Regularization can be done explicitly by modifying the loss function of an ML model optimization
process by including a regularization term 𝑅(𝑓), which depends on the model function itself, as in
equation (2.50), or implicitly by reducing themodel complexityModel

Complexity
differently. For instance, in a decision

tree model, the depth of a tree would be reduced; for an ANN model, the depth and width of the
network architecture would be reduced. [141, 143]
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̃ℒ𝜆(𝒀𝐴, 𝒀𝐵, 𝑅(𝑓)) = ℒ(𝒀𝐴, 𝒀𝐵) + 𝜆𝑅(𝑓) (2.50)

Here, 𝜆 is a hyperparameter, which is used to increase or decrease the regularization effect. The
loss function could include a generalized regularization term for linear models, as in equation (2.51).
This term is defined using the 𝑝-norm definition from equation (2.58).

̃ℒ𝜆(𝒀𝐴, 𝒀𝐵, 𝒂) = ℒ(𝒀𝐴, 𝒀𝐵) + 𝜆||𝒂||𝑝 (2.51)

The vector 𝒂—in the case of a linear model—is the 𝑘-dimensional vector containing the slopes for
the modeled 𝑘-dimensional feature space. This leads to lower slopes for regularized linear mod-
els like e.g. the Least Absolute Shrinkage and Selection Operator (LASSO) [144] and Ridge [145]
regression, as larger slopes result in an increased loss function value. This behavior can even be
used to select features Feature Selectionbased on the linear model’s slopes, as less impactful features can be strongly
suppressed compared to others using this technique. [141, 143, 146] However, when it comes to val-
idation and evaluation, all available methods rely on metrics to measure the model’s performance,
given the model’s predicted labels and the corresponding true labels. Metrics which play a key role
in this thesis are introduced in the following.

Metrics for Regression Tasks

There are various metrics ℳ available for use in regression task loss functions. Commonly used
metrics include the mean absolute error (MAE), as shown in equation (2.52), the mean squared
error (MSE), as shown in equation (2.53), and the coefficient of determination𝑅2 (equation (2.54)).
In fact, due to its differentiability and simplicity, the MSE Mean Squared

Error
is used within most model’s loss functions.

However, as theMSE is sensitive to outliers, there might be instances where it is not the best choice.
The word “mean” in the names of both the MAE and the MSE refers to the fact that the error sums
are divided by the number of computed errors for the𝑁 labels in each of the label vectors 𝒀𝐴 and
𝒀𝐵. [147–149]

ℳMAE(𝒀𝐴, 𝒀𝐵) = ||𝒀𝐴 − 𝒀𝐵||1
𝑁 (2.52) ℳMSE(𝒀𝐴, 𝒀𝐵) = ||𝒀𝐴 − 𝒀𝐵||22

𝑁 (2.53)

ℳ𝑅2(𝒀True, 𝒀Pred) = 1 − ||𝒀True − 𝒀Pred||22
||𝒀True − 𝔼 [𝒀True] ||22

(2.54)

Each metric has different advantages and drawbacks, which is the reason different metrics are used
for disparate challenges. Especially for the use of loss functions, the differentiability of the chosen
metric is advantageous for the implementation of the optimization problem, as the minimums of
convex differentiable functions are straightforward to compute. The advantages and disadvantages
that come with each metric are compared in detail in the Tables 2.1, 2.2, and 2.3 and are part of
the process to decide which metric should be chosen for a given problem. As the coefficient of
determination from equation (2.54) is not symmetric, the dependencies on the true data labels
𝒀True and the model predictions 𝒀Pred of the𝑅2 metric are displayed explicitly.

2.5 Machine Learning and Data Science 41



Advantages of the MAE Drawbacks of the MAE

• Due to the fact that the MAE is calcu-
lated using a 𝑝-norm with 𝑝 = 1, the
MAE has the same unit as the predicted
quantity.

• All errors are weighted linearly based
on their size. Hence, average perfor-
mance will be better.

• Despite being linear in the scaling, de-
viations in either direction are treated
equally due to the absolute value being
taken.

• As all errors are weighted linearly, there
is no inherent suppression for outliers.
Hence, outliers with large deviations
have a larger impact.

• Non-differentiable expression, which
makes optimizationmore difficult to im-
plement.

Table 2.1: Advantages and disadvantages of the MAE.

Advantages of the MSE Drawbacks of the MSE

• Outliers are suppressed, as the squared
deviation is part of the loss function.

• Differentiable expression, which makes
optimization easier.

• Large individual outliers can strongly al-
ter the scale of the error, which can lead
to a model that is overruled by another
despite a good performance apart from
the individual outliers.

• Given in squared units of the target
quantity.

Table 2.2: Advantages and disadvantages of the MSE.

Advantages of 𝑅2 Drawbacks of 𝑅2

• 𝑅2 is scale-independent, which makes
it easy to interpret. The closer to 1 the
value of𝑅2, the better.

• The coefficient of determination quan-
tifies how well the target quantity is de-
termined by the features using the ex-
amined model.

• The scale and unit of the target variable
are completely omitted, which gives no
insight into how large an actual error
could be.

• The coefficient of determination is not
defined for single-sample applications.

Table 2.3: Advantages and disadvantages of the coefficient of determination.

2 Methods42



Metrics for Classification Tasks

For binary classification tasks, many metrics could be used to determine the goal of an optimization,
depending on the target. The model’s predicted labels are compared to the actual labels to deter-
mine the metrics. Based on this comparison, the number of correct predictions for both classes—
one is assumed to be a positive class p and the other one assumed to be the negative class n—is
given by the number of true positives 𝑇𝑝 and true negatives 𝑇𝑛. Subsequently, assuming the model
is imperfect and misclassifies labels, the number of false negatives, meaning the model assigned a
data point to the negative class n while the positive class p would have been correct, is denoted by
𝐹𝑛. The number of false positives, meaning the model assigned a data point to the positive class p,
while the negative class n would have been correct, is denoted by 𝐹𝑝. While in some cases only the

accuracy Accuracy-score( 𝑇𝑛+𝑇𝑝
𝑇𝑝+𝑇𝑛+𝐹𝑝+𝐹𝑛

) is of relevance, in other applications it can be important to avoid false
negatives or false positives. Common metrics are shown in Table 2.4 using a schematic confusion
matrix.

Ground Truth
True Label
Positive

True Label
Negative

Predictions

Prediction Label
Positive

True positive
𝑇𝑝

(Correct)

False positive
𝐹𝑝

(Incorrect)

Precision
𝑇𝑝

𝑇𝑝+𝐹𝑝

Prediction Label
Negative

False negative
𝐹𝑛

(Incorrect)

True negative
𝑇𝑛

(Correct)

Negative
Predictive Value

𝑇𝑛
𝑇𝑛+𝐹𝑛

Recall
𝑇𝑝

𝑇𝑝+𝐹𝑛

Specificity Rate
𝑇𝑛

𝑇𝑛+𝐹𝑝

Table 2.4: Confusion matrix incorporating different ratios which could be used as metrics for a binary
classification problem.

Not only the optimization goal should be considered but also the nature of the data set. Class
imbalances can greatly impact a metric’s meaningfulness and need to be considered before an op-
timization goal is set. Beyond the metrics shown in Table 2.4 and the accuracy, the F1 score should
be mentioned. The F1 score can be interpreted as the harmonic mean between precision and recall
and is given by equation (2.55). The F1 score F1 scoreis especially useful for data that exhibits a strong class
imbalance, i.e. where one class is much more populated than the other. [150]

ℳ𝐹1(𝑇𝑝, 𝐹𝑝, 𝐹𝑛) = 2𝑇𝑝
2𝑇𝑝 + 𝐹𝑝 + 𝐹𝑛

(2.55)

For the accuracy, recall, and F1 scores it should be mentioned that these scores do not follow the
loss function convention that a larger score corresponds to worse model performance. Hence, to
fulfill this convention, these metrics require to be multiplied with a factor−1.
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Beyond the confusionmatrix scores, also the categorical cross-entropyCategorical
Cross-Entropy

is commonly used as a
loss function for classification tasks. In the binary case (𝑦𝑖 ∈ {0, 1}), the cross-entropy loss function
would be given by equation (2.56).

LCE (𝒚True, 𝒑Pred) = (2.56)

−
𝑁

∑
𝑖=1

(𝑦True
𝑖 log (𝑝Pred

𝑖 ) + (1 − 𝑦True
𝑖 ) log (1 − 𝑝Pred

𝑖 ))

In equation (2.56), 𝑝Pred
𝑖 denotes the probability with which the model predicted the class 1 for the

𝑖th label vector entry. This means if the used model would estimate a high chance that the label
1 is correct for the 𝑖th label, the probability will be close to 1. However, if the underlying model
estimates the label is likely 0, the probability would be close to 0. This way, cross-entropy penalizes
wrong labels and increments the loss if the model is very certain about a wrong prediction. This
probabilistic approach to loss estimation is well suited for such models, which estimate the predic-
tion’s probability—and hence provide a measure of confidence—as they are naturally probabilistic

Probabilistic
Models

by construction. Cross-entropy could even be used as a loss function for models that are not in-
herently probabilistic, as it is possible to estimate the corresponding probabilities in several cases.
[151–155] Furthermore, cross-entropy can be generalized to non-binary classification problems.

CV

Using a single validation set, as illustrated in Figure 2.19 already detaches the training process from
the hyperparameter optimizationHyperparameter

Optimization
procedure. However, a consequence of a single validation set is

that a large proportion of the data is involved in the parameter training, but a much smaller portion
is involved in the hyperparameter selection. To use a larger fraction of data for hyperparameter
optimization without reducing the amount of training data used for model parameter training, 𝑘-
fold CV is used. Like in the holdout method, a dedicated test set is first separated from the whole
data and not used in the training and hyperparameter selection steps. The training and validation
set is split into 𝑘𝑘-fold CV similarly sized data sets in the following step. Now, using the 𝑘 data sets, the model
will be trained on all data except for one set, as this particular set is used for validation afterward i.e.
to calculate a validation score based on the predictions for the validation set features and a chosen
metric. This pattern is repeated until each data set has been used for validation. This results in 𝑘
score results, calculated using the metricℳ. To determine the overall performance for a choice of
hyperparameters, all the calculated scores, which resulted based on the chosen hyperparameters,
have to be averaged to an overall CV score. This procedure is depicted simplified in Figure 2.21. [156]

Hence, the validation procedure using a single fixed validation set is fully incorporated into
the CV scheme. This scheme can be performed to the extent of the leave-one-out crossLeave-One-Out validation,
where the validation set size is exactly one data point. However, this is also a computationally very
expensive procedure, especially for large data sets. In fact, depending on how many combinations
of hyperparameters are subject to the validation process, this can be a computationally expensive
procedure even without the use of a leave-one-out CV. There is no general rule on how many CV
folds should be performed. Some sources suggest fold sizesFold Sizes ranging from 3 to 10 folds depending
on the given problem, the computational time a singlemodel training process takes, and the amount
of available data. [157, 158]
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Fold 1 …

Fold 2 …

⋮ …

Fold 𝑘 …

Training DataValidation Data

ℳ(𝒀 CV1
True , 𝒀 CV1

Pred )

ℳ(𝒀 CV2
True , 𝒀 CV2

Pred )

ℳ(𝒀 CV𝑘
True , 𝒀 CV𝑘

Pred )

⋮
1
𝑘

𝑘
∑
𝑖=1

ℳ(𝒀 CV𝑖
True, 𝒀 CV𝑖

Pred)

Figure 2.21: Schematic depiction of a CV that is used to determine hyperparameters, using multiple val-
idation data sets and averaging over all evaluations afterward.

After the hyperparameter selection procedure has finished, the data that has been used for
training and hyperparameter selection processes can be used to retrain Retrain After CVthe entire model for a fi-
nal evaluation on the test set using the determined hyperparameters. Beyond retraining, after the
hyperparameter optimization and evaluating the CV performance of a model, it is possible to use
the test set for a final evaluation of unseen data and afterward retrain the model using the chosen
hyperparameters with the complete data set. However, while this is favorable for small data sets as
additional training data has the capabilities to reduce the generalization error [159] of the model,
and while it is likely—assuming proper data randomization—that retraining the chosen model will
increase the model’s performance in the predictive modeling application, it has to be kept in mind
that the retrained model is in principle not validated and evaluated in this case. Some authors also
suggest using only training and validation sets in combination with CV for ML applications with only
comparatively small amounts of data available. [159] However, this way, the CV score is the only
indicator of how the model would perform on unseen data, as the CV procedure has been involved
in the hyperparameter optimization process, the CV score obtained from the validation step cannot
be viewed as unbiased as a test score would be. On the other hand, it could also be argued that
after performing the CV, an additional test set, in principle, only adds another evaluation fold to
the CV procedure, but without training on the test in the remaining CV folds. From two of the ap-
plications, in the results section of this thesis, Retrain on Full

Data
it can be seen that models that are retrained on the

entire available data after CV-based hyperparameter selection and testing can indeed be success-
fully applied to materials science applications. However, the predictions of such retrained models
should always be treated with care, even though the full data retraining procedure for finalizing
an ML model before it is deployed in production for predictive modeling is standard procedure in
industry applications. [160]

2.5.2 Model Types

ML methods feature a plurality of models that can be used to tackle diverse academic and industry
challenges. The zoo of ML models contained in the open-source Python scikit-learn library alone
featuresmore than 100 estimators. [114] Combining this knowledgewith the famous “no free lunch”
theorem,which essentially includes the consequence that it is impossible to knowbeforehandwhich
model will fit a given data set best, this concludes that to find the best possible estimator Best Estimatorfor a given
problem it would be required to test and evaluate all estimators. It is clear this is an exhaustive
task to complete. Hence, the goal of ML is not to find the best imaginable model but to find an
estimator that represents the relations of the underlying data up to a standard that ensures the
intended application purpose can be fulfilled with the desired confidence. [161]

2.5 Machine Learning and Data Science 45



Often, at the beginning of a study, various models are trained on a given data set to evaluate
their individual performance. This practice is sometimes referred to as the “shotgun approach”,

Shotgun
Approach

which translates to the procedure of trying various models on the data to determine which models
are performing well and then proceeding with the knowledge obtained from this approach.

ML models can be classified as parametric or non-parametric models.Parametric &
Non-Parametric

The difference be-
tween these classes is that parametric models assume that the underlying true mapping follows a
probability distribution, which is defined by a finite and fixed number of distribution parameters. In
contrast to parametric models, non-parametric models only assume the smoothness of the underly-
ing true mapping. [162, 163] A visual representation of a selection of models is given in Figure 2.22.
In the following, a selection ofmodel types is briefly introduced, which are of relevance to the results
acquired during this thesis.

ML
ModelsParametric

Linear
Models

Logistic
Regression

LASSO

Linear
Regression

Ridge
Regression

Elastic Net
Regression

Lars

Non-Linear

Naive
Bayes

Deep
Neural
Networks

Polynomial
Regression

Non-
Parametric

Support
Vector
Machines

Tree Based
Models

K-Nearest
Neighbors

LOESS
Regression

Kernel
Regression

Figure 2.22: Overview over various ML models, including a rough classification of the models in para-
metric and non-parametric, as well as linear and non-linear in the parametric case. As non-
parametric models do not assume an underlying parametric truemapping of the fitted data,
they cannot be classified as linear or non-linear mapping models.

Linear Models

Linear models are characterized by the fact that they assume a linear relationship between the data
features and the corresponding labels. In a regression task with a single regressand, the general
formula that unifies linear models and links the feature vector 𝒙 to the target quantity 𝑦 is given by
equation (2.57).

𝑦 = 𝒙 ⋅ 𝒂 + 𝑏 (2.57)
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In equation (2.57) 𝑏 denotes the constant intercept and the vector 𝒂 contains the slopes
Loss Function
Minimization

corresponding to the individual features. Both the intercept and the slope vector are fitted in the
loss function minimization process. Let us recall the regularized loss function from equation (2.51),
where the regularization term contains the slope vector𝒂. If we choose to use the 𝑝-normas defined
in equation (2.58) for an 𝑛-dimensional feature vector 𝒙, the loss function for the ridge regression

𝑝-Norm for
Regularization

for the choice (𝑝 = 2) and, likewise, the loss function for the LASSO regression for the choice (𝑝 = 1)
can be retrieved. [144, 145]

||𝒙||𝑝 ∶= (
𝑛

∑
𝑖=1

|𝑥𝑖|𝑝)
1
𝑝

(2.58)

The elastic net regression’s loss function can be acquired summing the regularization terms 𝑝 = 1
and 𝑝 = 2 from ridge regression and LASSO regression together into the loss function, each with an
individual scaling term for the regularization strength, 𝜆1 and 𝜆2, respectively. [164]

Decision Tree Based Models

Decision trees use nodes in a graph to split the data based on a criterion assigned to each node that
is not a terminal node to determine a non-parametric decision-based model to tackle classification
and regression tasks. Each decision made on a node involves a feature and aims to split the data.

Data Splitting on
Nodes

This splitting subsequently leads to a spatial separation of the feature space into terminal regions,
which correspond to the individual terminal nodes. Starting from a root nodewhich contains all data
provided to the model, decision trees use a greedy algorithm [165] to determine the locally optimal
feature and threshold Greedy

Algorithm
combination to split and distribute the data to child nodes. Hence, all future

decisions depend on previous node decisions, as no backtracking is performed, which includes that
there is no guarantee that a globally optimal split is determined during the modeling procedure. An
example of a simple tree, including different decision thresholds and features, is given in Figure 2.23.
A simple implementation of this greedy algorithm approach would be to iterate over every feature
and all possible decision thresholds, which are located in between all neighboring values of an indi-
vidual feature. However, to determine the locally optimal split criterion in this algorithm, some kind
of metric is required to compare the split performance. For the purpose of evaluating splits, the
information gain𝛥𝐻 is defined in equation (2.59) for each non-terminal node𝑚. Information Gain

𝛥𝐻
[114, 166–168]

𝛥𝐻𝑚 = 𝐻𝑚 − 1
𝛺𝑚

∑
𝑖∈𝐶(𝑚)

𝐻𝑖 (2.59)

𝐻𝑚 in the classification case denotes the information theory based entropy Entropy[155] for the data𝐷(𝑚)
assigned to the node𝑚. In the regression case, the variance for the data on node𝑚,𝛺𝑚 denotes the
number of data points assigned to node𝑚, while𝐶(𝑚) denotes the set of all child nodes of node𝑚.
In a classification task,𝐻𝑖 is closely related to the cross-entropy loss function from equation (2.56).
The entropy and variance expressions for an individual node, respectively, are given in equation
(2.60), with 𝑝𝑖𝑗 denoting the probability of a data point of class 𝑗 occurring in node 𝑖. Probability in

Decision Trees
For unseen

data—outside the training process—this quantity is given based on the class occurrences of the
training set. [114, 167]

𝐻Class
𝑖 = − ∑

𝑗
𝑝𝑖𝑗 log(𝑝𝑖𝑗) 𝐻Reg

𝑖 = ∑
𝑦∈𝐷(𝑖)

(𝑦 − 𝔼 [𝑦])2 (2.60)
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𝑥𝑖 ≤ 𝑎
••••••••••

𝑥𝑗 ≤ 𝑏
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𝑥𝑙 ≤ 𝑑
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••
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•

Terminal Node 1
•••

Figure 2.23: Exemplary depiction of a simple decision tree for a regression task to predict the redness
of given colors based on some arbitrary features. This illustrates the splitting at each non-
terminal node and grouping within terminal nodes, as well as the feature space separation
using the splitting conditions. The groups forming at terminal nodes show similarities in their
properties. This is a result of the attempt to split the data in a way that the information gain
from each splitting is as large as possible.

The sum over the respective node’s loss functions over the whole tree 𝑇 gives the loss of the entire
tree. [114] However, during training, the entire tree loss at once is not optimized, but the informa-
tion gain of each node splitting is maximized. Intuitively, a negative information gain implies that
additional data splitting does not provide additional predictive power on the training set. [114, 167]
Hence, a node becomes a terminalEmergence of

Terminal Nodes
node when either:

• The information gain of all possible splittings is negative.

• A node only contains a single class (classification) or a single numerical value (regression). (So-
called pure nodes)

• An additional splitting of the data at the current node would lead to the tree exceeding the
maximum tree depth hyperparameter.

Setting the maximum depth of a tree is intentionally used to avoid overfitting of the training data
set.Avoiding

Overfitting in
Tree Models

So-called decision stumps—decision tree models with only a single decision performed—are
commonly used as weak learners [169, 170] in some boosting and bootstrap aggregation methods.
Boosting and bootstrap aggregation methods belong to the ensemble model methods, which are
discussed in the following section. [171, 172]Ensemble

Methods
It is worthwhile to note that the decision tree model

does not always manage to end up with all terminal nodes as pure nodes when regularization is
applied, for instance, by limiting the tree depth. In these cases, the prediction for unseen data
follows the majority vote (classification) or the mean (regression) of all the training labels in the
terminal node that the unseen data point ended up in.

Ensemble Models

Ensemble models do not rely on a single underlying model but combine multiple models to in-
crease the overall predictive power and performance. This section briefly introduces the ensem-
ble methods of stacking, bootstrap aggregation, and boosting. In stacking models, multiple models
combined—even such based on completely different methods—feed their predictions into a meta
learnerMeta Learner , which combines the predictions of the first learning layer to determine the actual prediction
based on the provided features. Typically, stacking models perform as well as the best estimator in
the first learning layer but are capable of exceeding the predictive power of the best estimator. [114,
173, 174] The scheme that is underlying a stacking model is shown in Figure 2.24.
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Figure 2.24: Schematic depiction of the training process of a stackingmodel. The first learning layer does
not limit the𝑁 models to a single model type. The predictions of the individual estimators
from the first learning layer are collected and used as a feature vector to make the final
prediction of the stacking model using the meta-learner of the second learning layer. The
depicted model architecture can be used for both regression and classification tasks. Cylin-
ders depict data being used at different points of the stacking model’s architecture.

Bootstrap aggregation (bagging) methods involve the distribution of random subsets Random
Sub-Sampling

of the
training data onto 𝑁 individual estimators of the same kind, collecting their predictions and aggre-
gating them together. Aggregation, in this case, means that the𝑁 estimators’ predictions are either
averaged (regression) or determined by a majority vote (classification). This is also the procedure
of an unseen feature vector that would be predicted by the bootstrap aggregation estimator. [175]
Random subsets with regard to the training set means that a random subset of the training data
is used to train each estimator, which is part of the bagging model. If the estimators are decision
trees, then this fact ensures that the base estimator decision trees do not all share the same archi-
tecture and decision thresholds. [176] Often, decision tree models are used as base estimators in
bootstrap aggregation models. A depiction of the training process using multiple tree estimators 𝑇𝑖
and randomized training data subsets𝑋𝑖 is shown in Figure 2.25.

As already mentioned, decision tree models use a greedy algorithm to determine the locally
optimal split of a node. This can lead to very similar trees with only slight deviations in the used
training subset. To avoid this, the random forest model uses a specified number of decision trees
which are not only trained on a random subset of the training data, but it also randomly determines
which features are taken into account for each split of tree nodes. Random ForestsThis random component aims to
decrease the variance. The implementation of the random forest model in the popular scikit-learn
package, however, does not perform a simple majority vote in the classification case but performs
an averaging of the probabilistic classification output for each base estimator. [114, 177] Beyond
the random forest model, the extremely randomized trees Extremely

Randomized
Trees

(extra trees) model is included within
the scikit-learn package. In the extra trees model, not only the feature sampling for the splitting is
performed randomly, but also the determination of the decision thresholds is randomized. A set of
random thresholds is generated, out of which the best one is then selected. This leads to additional
randomization and eventually to an expected additional decrease in variance, but in consequence,
a slight Decreased

Variance
increase in bias. As the computation of the decision boundaries is omitted, the model’s

computational efficiency is also slightly increased in comparison to random forestmodels. [114, 178]
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Sub-Sampling

…

𝑇1(𝑋1) 𝑇2(𝑋2) 𝑇𝑁(𝑋𝑁)

Averaging for Regression or Majority Vote for Classification

Prediction

Figure 2.25: Depiction of the training process for a bootstrap aggregation modeling, using decision tree
base estimators. It can be seen that from training on different subsets of training data points
𝑋𝑖, different base estimators 𝑇𝑖 emerge. Combining the predictions of all base estimators
by majority vote or averaging allows the bootstrap aggregation model to make predictions
using all𝑁 base estimators on unseen data. Cylinders depict both model input and predic-
tion data.

Beyond stacking and bagging, a commonly used ensemble method is boosting. Unlike stack-
ing and bagging, where the base estimators are predicting a quantity independent of the predictions
of other base estimators, boosting involves base estimators correcting the errors of other estima-
tors. This requires that the model predictions are computed not in parallel, but rather in serial.Boosting The
idea behind boosting is that each model makes a prediction and also computes some kind of weight
for each training data point. This weight is increased if the underlying base estimator fails to predict
the individual data point correctly or decreased if the prediction of the estimator is accurate. This
causes weak learners to focus on learning the properties of more difficult data points, as they get
falsely predicted more often. Essentially, the weights serve as an incentive for the model’s base esti-
mators to correct the predictions of data points that previous estimators failed to accurately predict.

Incentive for
Self-Correction

This implements the concept of self-correction for each subsequent tree. [114, 170, 179] A depic-
tion of themodel training process and corresponding architecture is given in Figure 2.26. In order to
compile a prediction, in boosting the predictions of all models and the weights which resulted from
the individual base estimators weaknessesModel Weakness are combined to a weighted overall prediction.
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Figure 2.26: Depiction of a boosting estimator training process using 𝑁 weak tree-based estimators 𝑇𝑖.
Thewavy line passing from the previously evaluated tree𝑇𝑖−1 to each subsequent tree𝑇𝑖 de-
notes the information transfer from the neighboring weak estimators about the predictive
weaknesses of the predecessing tree 𝑇𝑖−1. Using the passed information about the weak-
nesses of the previous models, the learning objective of the latter trees can be adjusted
accordingly to predict more difficult data points correctly. Cylinders depict data being used
at different points of the boosting model’s architecture.

The weight that a base estimator receives in the final prediction depends on the estimator’s
performance in comparison to the other base estimators. Hence, the use of weights has two advan-
tages:

• The model’s base estimators are required to determine a way to predict difficult data points
as the corresponding weight increases. [180]

• The weighted process of prediction assigns more importance for the overall result to accurate
base estimators. [180]

Both bagging and boosting aim to decrease the variance of their predictions. But it has been estab-
lished that boosting outperforms bagging when it comes to decreasing the variance. [181] There
are different algorithms and implementations of boosting ensemble models available. An example
of a boosting algorithm is Adaptive Boosting (AdaBoost) AdaBoost[182]. In AdaBoost, the weights for data
points are initialized uniformly and automatically adjusted for each set-up base estimator. A later
iteration in the history of boosting methods is represented by the gradient-boosted Gradient-

Boosted Decision
Trees

decision trees
(gradient boosting) method. This method, introduced in the following section, extends the boosting
method beyond the computation of the weights to the optimization of a continuous and convex loss
function. Whereas AdaBoost relies on a specific, exponential loss function, gradient boosting Additive

Prediction
does

not rely on a majority vote or average to predict unseen data but on an additive procedure. [180]
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Gradient Boosting

While gradient boosting represents a boosting algorithm, there are subtle differences when com-
pared to earlier implementations of boosting like AdaBoost. Some of them include:

• Gradient boosting is not limited to tree stumps as base estimators, but typically uses deeper
trees, i.e. decision trees with more than a single decision node.

• Individual base estimators are also multiplied by a weight and a learning rate 𝛼 before they
are compiled into the overall model result. However, the weight is chosen by an optimization
step for all base tree estimators except the first estimator (Typically referred to as estimator
𝑚 = 0). In gradient boosting this𝑚th base-estimator’s weight is denoted as 𝛽𝑚 and does not
directly indicate each base estimators predictive capabilities, as in e.g. AdaBoost.

• All base estimators—except the first one—do not actually learn to predict the target quan-
tity from the training set, but rather learn to predict a pseudo-residual that results from all
previous predictions compared to the actual label of the individual data point in the training
data.

• In order to optimize themodel, gradient descent [183] is used, which requires the loss function
to be convex and differentiable. [184]

The overall model prediction at base estimator𝑚 is given by the expression in equation (2.61) and
depends on the prediction of the previous base estimator𝑚−1, as well as the residual prediction of
model𝑚 for the data point 𝑖, which is denoted as 𝑟𝑚𝑖. The residual approach can be used for both
regression and classification problems. In the classification task, the pseudo-residualsPseudo-Residuals are actually
the residuals of the probabilities, determined by the model, for data points 𝒙𝑖 to lie within a given
class, compared to its true class. [185]

𝑓𝑚(𝒙𝑖) = 𝑓𝑚−1(𝒙𝑖) + 𝛼𝛽𝑚𝑟𝑚𝑖 (2.61)

Hence, the prediction of base estimator tree 𝑚′ of the boosting model is given by equation (2.62).
Therefore, the ensemble prediction is based on the initial guessInitial Prediction from the single-node estimation at
𝑚 = 0 and then adds the predicted residuals from each base estimator scaled by the learning rate
𝛼 and the corresponding estimator’s weight. This way, the initial guess is iteratively corrected by
each base estimator one after another. [185]

𝑓𝑚′(𝒙𝑖) = 𝑓0(𝒙𝑖) +
𝑚′

∑
𝑚=1

𝛼𝛽𝑚𝑟𝑚𝑖 (2.62)

Using equation (2.62) the prediction of the overall model can be determined by setting 𝑚′ = 𝑁 .
However, at this point, it is unclear how the 𝑟𝑚𝑖 are acquired. In order to understand where the
residuals come from, a loss function has to be defined. The loss function typically used in regres-
sion during gradient boosting is the MSE, similar as shown in equation (2.53). Computing the loss
function—using the convention that a single data point is denoted via (𝒙𝑖, 𝑦𝑖) with 𝑖 ∈ [1, 𝑁Dat]
within the training set—at base tree estimator 𝑚′ the equation (2.63) emerges. For classification
tasks, the cross-entropy loss from equation (2.56) is commonly used. Again, the loss functionOverall

Loss-Function
of the

entire boosting model can be acquired setting𝑚′ = 𝑁 . [185]

ℒ𝑚′(𝒚, 𝒚𝑚′
Pred) = 1

𝑁Dat

𝑁Dat

∑
𝑖=1

ℒ(𝑦𝑖, 𝑓𝑚′(𝒙𝑖)) = 1
𝑁Dat

𝑁Dat

∑
𝑖=1

(𝑦𝑖 − 𝑓𝑚′(𝒙))2 (2.63)
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In equation (2.63) the relation shown in equation (2.64) has been used.

𝒚𝑚′
Pred =

𝑁Dat

∑
𝑖=1

𝑓𝑚′(𝒙𝑖)𝒆𝑖 (2.64)

In this representation 𝒆𝑖 denotes the unit vector with which the label vector 𝒚 can be decomposed.
Generally, the pseudo-residuals used for training the𝑚th base estimator are given by the derivative
in equation (2.65).

𝑟𝑚𝑖 = − ∂ℒ (𝑦𝑖, 𝑓(𝒙𝑖))
∂𝑓(𝒙𝑖)

∣
𝑓(𝒙𝑖)=𝑓𝑚−1(𝑥)𝑖

(2.65)

The idea behind the expression in equation (2.65) becomes clear as the MSE-based loss function is
inserted to evaluate this expression. This is done in equation (2.66).

𝑟𝑚𝑖 = − 1
𝑁Dat

∂ (𝑦𝑖 − 𝑓(𝒙𝑖))
2

∂𝑓(𝒙𝑖)
∣
𝑓(𝒙𝑖)=𝑓𝑚−1(𝑥)𝑖

(2.66)

= 2
𝑁Dat

(𝑦𝑖 − 𝑓𝑚−1(𝒙𝑖))

Hence, the residuals which are used to train the 𝑚th base estimator are given by the true training
labels and the predictions of the previousmodels 𝑓𝑚−1(𝒙𝑖) only, whichmakes the pseudo-residuals
simple to compute. However, the applicability of equation (2.65) is not restricted to the MSE-based
loss function. The training data for the 𝑚th estimator is represented by the tuples (𝑥𝑖, 𝑟𝑚𝑖)∀𝑖 ∈
[1, 2, … , 𝑁Dat].

In an additional step, the tree weight is determined using an optimization step, as given in
equation (2.67) for each base estimator tree. [185]

𝛽𝑚 = arg min
𝛽

𝑁Dat

∑
𝑖=1

ℒ (𝑦𝑖, 𝑓𝑚−1(𝒙𝑖) + 𝛽𝑟𝑚𝑖) (2.67)

Hence, the weight 𝛽𝑚 is not originating from the performance evaluation of a given tree, as were
the weights in AdaBoost, but is chosen such that the loss function containing the previously com-
puted pseudo-residuals is minimized with regard to the weight. Summing this up, gradient descent
provides the direction in which the value of the previous prediction needs to be corrected. However,
as the pseudo-residuals are scaled by the general learning rate Learning Rateand by the base estimator weights in
the overall estimation, a plurality of trees has to be used in order to approach the true value of the
target quantity asymptotically. This leads to the mentioned scheme, where each tree corrects the
errors of the previous base estimator tree by iteratively optimizing the loss function using gradient
descent. In fact, an overly large learning rate can lead to an overshooting prediction instead of an
asymptotic approach of the predicted value towards the true label’s value. This is intuitively clear
as gradient descent provides the correct direction, the corresponding pseudo-residual needs to be
corrected towards, but not the exact scale. The scale of 𝑟𝑚𝑖 obtained in the process depends on the
scaling of the used loss functionℒ, which is not absolute but relative. Also, the learning rate can act
as a form of regularization Regularizationto prevent overfitting since it has been found that models using learning
rates 𝛼 < 0.1 are more capable of generalization than such with higher learning rates. [179]
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As the estimator 𝑓0(𝒙) is given by a single tree node without any decision learned, this first
estimator is basically a constant value. The nature of this value is loss function dependent, as the
constant initial estimation is given by the expression in equation (2.68). [185]

𝑓0(𝒙) = arg min
𝜅

𝑁Dat

∑
𝑖=1

ℒ(𝑦𝑖, 𝜅) (2.68)

This concludes that, for theMSE-based loss function, the initial prediction is given in equation (2.69).

𝑓0(𝒙) = arg min
𝜅

𝑁Dat

∑
𝑖=1

(𝑦𝑖, 𝜅) = 1
𝑁Dat

arg min
𝜅

𝑁Dat

∑
𝑖=1

(𝑦𝑖 − 𝜅)2 (2.69)

Minimizing the latter expression with regard to 𝜅 in equation (2.69) leads to the expression in equa-
tion (2.70) that is essentially the mean of all training labels 𝑦𝑖.

𝜅 = 1
𝑁Dat

𝑁Dat

∑
𝑖=1

𝑦𝑖 (2.70)

Hence, in the case of ℒ being given by the MSE, 𝜅 is given by the average of the label vector. The
same reasoning holds true for the output of a nodewithin a base estimatorwithmultiple data points
assigned during the training. In this case, the predicted value of the individual node is the average
of the assigned data points, as this minimizes the MSE loss function.

Beyond gradient-boosted trees, the implementation of extreme gradient boostingExtreme
Gradient
Boosting

(XGBoost),
among others, introduces additional hyperparameters that allow further tuning of the model, as
well as tweaks that improve computational efficiency. This more advanced implementation is briefly
introduced in the following section.

Extreme Gradient Boosting

The XGBoost [125] method adds two regularization terms to the loss function of each base tree es-
timator similarly to equation (2.50) by including a term that encourages tree pruning (𝑇𝑚 denoting
the number of terminal tree nodes in the𝑚th tree) and the squared norm of the vector𝝎𝑚 that con-
tains all tree node outputs associated with the𝑚th tree. The regularization used by XGBoost in that
sense is very similar to the regularization introduced by [186].Additional

Regularization
The modified XGBoost loss function

ℒXGB can be expressed using the gradient-boosted trees loss function ℒGB from equation (2.63)
and combining the loss function with the regularization terms as shown in equation (2.71). [125]

ℒXGB (𝒚True, 𝒚Pred, 𝑓) = ℒGB (𝒚True, 𝒚Pred) +
𝑁Trees

∑
𝑚=1

𝑅(𝑓𝑚) (2.71)

with 𝑅(𝑓𝑚) = 𝛾𝑇𝑚 + 𝜆
2 ||𝝎𝑚||22

However, in order to optimize the tree base estimators sequentially, the loss function for individual
trees has to be used, which is given in equation (2.72). Again, the relation from equation (2.64) has
been used here. [125]
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ℒXGB
𝑚 (𝒚True, 𝒚Pred, 𝑓𝑚) = 1

𝑁Dat

𝑁Dat

∑
𝑖=1

ℒ(𝑦𝑖, 𝑓𝑚(𝒙𝑖)) + 𝛾𝑇𝑚 + 𝜆
2 ||𝝎𝑚||22

Hence, the computation of the loss function of the base estimator 𝑚 essentially is the task of com-
puting the average of all data label losses after the prediction of the 𝑚th tree and determining the
tree-specific regularization term. Second Order

Loss Function
Here, 𝑇𝑚 denotes the number of terminal nodes in tree 𝑚. Both

𝜆 and 𝛾 are regularization constants. However, rewriting 𝑓𝑚(𝒙𝑖) using equation (2.62) and expand-
ing the resulting expression in 𝑓𝑚(𝒙𝑖) using a second order Taylor expansion [187] results in the
expression as given in equation (2.72). [125, 188]

ℒXGB
𝑚 (𝒚True, 𝒚Pred, 𝑓𝑚) ≈ (2.72)

1
𝑁Dat

𝑁Dat

∑
𝑖=1

(ℒ (𝑦𝑖, 𝑓𝑚(𝒙𝑖)) + 𝑓𝑚(𝒙𝑖)
∂ℒ (𝒚True, 𝑓𝑚−1(𝒙𝑖))

∂𝑓𝑚−1(𝒙𝑖)

+1
2 (𝑓𝑚(𝒙𝑖))

2 ∂2ℒ (𝒚True, 𝑓𝑚−1(𝒙𝑖))
∂ (𝑓𝑚−1(𝒙𝑖))

2
⎞⎟
⎠

+ 𝑅(𝑓𝑚)

In the representation given in equation (2.72) for the𝑚th tree, both derivatives are evaluated with
regard to the tree𝑚 − 1which makes them a constant for the optimization of the𝑚th tree. Hence,
the derivative-originated constant factors are rewritten as ∂𝑖

𝑚−1 and ∂∂𝑖
𝑚−1. Also, the zeroth order

loss function is a constant in this representation and can, therefore, be omitted for the optimiza-
tion objective. Therefore, the considered loss function of the 𝑚th base estimator tree reads as in
equation (2.73). [125]

ℒXGB
𝑚 (𝒚True, 𝒚Pred, 𝑓𝑚) ≈ (2.73)

1
𝑁Dat

𝑁Dat

∑
𝑖=1

(𝑓𝑚(𝒙𝑖)∂𝑖
𝑚−1 + 1

2 (𝑓𝑚(𝒙𝑖))
2 (∂∂𝑖

𝑚−1))) + 𝑅(𝑓𝑚)

Using the earlier notation of𝐷(𝑙) denoting the data subset assigned to the tree node 𝑙 in the given
𝑚th base estimator and the node score 𝜔𝑚𝑙 is technically equivalent to the value of 𝑓𝑚(𝒙𝑖) when
𝒙𝑖 ∈ 𝐷(𝑙) as the base estimator’s prediction for an individual data point solely depends on the cor-
responding terminal node score the data point ends up in, the previous expression can be simplified
as done in equation (2.74). [125]

ℒXGB
𝑚 (𝒚True, 𝒚Pred, 𝑓𝑚) ≈ (2.74)

1
𝑁Dat

𝑇𝑚

∑
𝑙=1

⎛⎜
⎝

𝜔𝑚𝑙 ∑
𝒙𝑖∈𝐷(𝑙)

(∂𝑖
𝑚−1) + 1

2𝜔2
𝑚𝑙

⎛⎜
⎝

∑
𝒙𝑖∈𝐷(𝑙)

(∂∂𝑖
𝑚−1) + 𝑁Dat𝜆⎞⎟

⎠
⎞⎟
⎠

+ 𝛾𝑇𝑚

Now optimizing the loss function from equation (2.74) with regard to the individual node score, this
concludes that the optimized scores are Optimized Tree

Weights
given by equation (2.75). However, this assumes that the

tree structure, including the number of terminal nodes 𝑇 , remains unchanged. [125]

𝜔𝑚𝑙 = −
∑

𝒙𝑖∈𝐷(𝑙)
(∂𝑖

𝑚−1)

∑
𝒙𝑖∈𝐷(𝑙)

(∂∂𝑖
𝑚−1) + 𝜆̃

(2.75)
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Within the previous expression, it has been used that 𝜆 is a scaling regularization term, which is
now combined as 𝜆̃ = 𝑁Dat𝜆. In order to acquire equation (2.75), the derivative ∂ℒ

∂𝜔𝑚𝑙
was set

to zero and solved for 𝜔𝑚𝑙. Hence, the optimization requires the second derivative in 𝜔𝑚𝑙 to be
positive in order for the solution to indeed present as a minimum. This is true, as the loss function
is required to be convex and differentiable. Using the squared error loss function, the optimized
scores as contained in equation (2.76) emerge.

𝜔𝑚𝑙 = 2
∑

𝑖∈{𝑖|𝒙𝑖∈𝐷(𝑙)}
(𝑦𝑖 − 𝑓𝑚−1(𝒙𝑖))

𝜆̃ + ∑
𝒙𝑖∈𝐷(𝑙)

2
(2.76)

In order to interpret the expression from equation (2.76), one can look at the numerator and denom-
inator separately. The numerator is proportional to the sum of the residuals acquired using the loss
function in the terminal node 𝑙. The denominator is proportional to the number of data points—
and hence also the number of residuals—in the given terminal node 𝑙. It is only accompanied by
some constant regularization parameter, which effectively lowers the terminal tree node scores as
a measure of regularization to prevent overfitting.

Now, using equation (2.75) and inserting the optimized node scores in equation (2.74) leads—
after simplification—to the expression shown in equation (2.77).

ℒXGB
𝑚 (𝒚True, 𝒚Pred, 𝑓𝑚) ≈ −1

2
𝑇𝑚

∑
𝑙=1

( ∑
𝒙𝑖∈𝐷(𝑙)

∂𝑖
𝑚−1)

2

∑
𝒙𝑖∈𝐷(𝑙)

(∂∂𝑖
𝑚−1) + 𝜆̃

+ 𝛾𝑇 (2.77)

This approximation used as loss function allows us to compute the information gain of a splitInformation Gain
in Node Split

in the
case of a binary split. Assuming a parent node 𝑃 is split by a decision into two child nodes 𝐶1 and
𝐶2, the information gain of the chosen split is given by equation (2.78). [125]

𝛥𝐻 = 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

( ∑
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∂𝑖
𝑚−1)

2

∑
𝒙𝑖∈𝐷(𝐶1)

(∂∂𝑖
𝑚−1) + 𝜆̃

+
( ∑

𝒙𝑖∈𝐷(𝐶2)
∂𝑖

𝑚−1)
2

∑
𝒙𝑖∈𝐷(𝐶2)

(∂∂𝑖
𝑚−1) + 𝜆̃

−
( ∑

𝒙𝑖∈𝐷(𝑃)
∂𝑖

𝑚−1)
2

∑
𝒙𝑖∈𝐷(𝑃)

(∂∂𝑖
𝑚−1) + 𝜆̃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−𝛾 (2.78)

The expression from equation (2.78) can easily be acquired by projecting the loss from equation
(2.74) on a single node and taking the difference. As both child node losses are subtracted from
the loss of the parent node, and each node considered for itself has 𝑇 = 1, only 𝛾 remains beside
the first and second loss function derivative-dependent terms. Hence, the regularization parameter
𝛾 is crucial to the decision if a split is performed or avoided for the underlying base estimator, as
increasing 𝛾 leads to a depressed information gain, and a negative value for the information gain
would result in a split option being rejected.
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Besides the discussed loss function properties and the larger degree of regularizability com-
pared to gradient boosting, the implementation of XGBoost [125] has some more benefits to offer,
which are not discussed here in detail. Those include: Features of

XGBoost
• XGBoost has built-in handling for sparse input, which is already taking effect during the split-
finding.

• XGBoost is not limited to using an exact greedy algorithm but is also capable of using an ap-
proximation.

• XGBoost is highly parallelized regarding split finding in the training process.

These properties make XGBoost well suited for the use on extensive data sets. [125] Also, the initial
estimation—as occurring in gradient boosting—is not determined by aminimization but is accessible
as input to themodelwhile training. However, if no input is provided, the value of 0.5 is a hard-coded
default as an initial estimation for both classification and regression.

2.5.3 Gaining Physical Knowledge from Trained Models

MLmodels—especially ensemblemodels—typically learn from provided data and afterward predict
unseen data as a black-box function and, therefore, are hard to interpret and explain. Interpretability &

Explainability
However,

many applications mandate that decisions can not be made based on a black-box function; instead,
they have to be explainable, especially for use cases where people’s lives are affected by a model’s
prediction such as credit and insurance decisions based on ML modeled risk assessment. [189–
191] As institutions may be held liable for decisions based on ML models, it is essential that the

Requirement for
XAI

reasoning behind a model’s decision is understood within the institution and also is explainable to
those affected by themodel output. Hence, the field of XAI emerged alongsideMLmodels. This goes
to the extent that some models already come with model-specific explainer routines. For instance,
the decision tree models in scikit-learn come with the ability to plot the decision tree, including
decisions, as well as the ability to visualize the feature space separation of a given decision tree’s
decisions. [114] For other models, like LASSO, the modeling coefficients (slopes) can be interpreted
as a measure of the importance of individual features. However, while these are feasible options
for these specific models, a model-agnostic approach backed by a rigorous mathematical theory
underlying the approach is desirable. Luckily, the SHapley Additive

exPlanations
SHAPpackage fulfills both conditions and is publicly

available as open-source code [128]. In the following sections, a brief introduction to the underlying
theory of coalition game theory, Game TheoryShapley values, and the package’s capabilities is given. [13, 128]
However, whenever ML models are interpreted, it is crucial to be aware of confirmation bias [192]
and not only look for results that support the own hypothesis but also for evidence that has the
potential to validate another hypothesis or hints on the fact that the model has not Confirmation

Bias
indeed learned

relations in the data but rather overfitted artifacts (e.g. noise) that are contained within the data.

Explainable AI in Natural Sciences

Beyond applications in society and liabilities emerging from the use of ML models, explainability is
crucial in understanding underlyingmechanisms. Beyond the fact thatMLmodels provide black-box
predictions, to add value to the disciplines of natural sciences, predictions have to have a reasoning
behind them and need to be understood to contribute towards the accumulation of knowledge.
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In natural sciences, discovering a particular underlying pattern is generally worthKnowledge &
Pattern

Discovery

more than
an individual prediction obtained by a black-box model. While there exist applications where it is
acceptable to have a black-box model and use the obtained predictions, this is not the case for the
natural sciences, as a rule.

XAI methods can be used after a model has been trained on a data set to potentially discover
complex and previously unknown relations—that could otherwise be overlooked. The application
of the scientific methods does, of course, not stop at the point where an XAI-based approach has
found a relation between quantities based on a trainedmodel. Still, XAI can provide the incentive for
a further investigation into that specific relation. In that sense, XAI should be seen as an additional
tool for scientists to discover knowledge, relations, and reasoning in data. [193, 194]

Coalition Game Theory

Introducing coalition game theory begins by defining the elements of a coalitional game 𝕍 with a
transferable payoff, as done in definition 3.

Definition 3. “A coalitional game with transferable payoff consists of the following elements:

1. A finite set of𝑁 players, the so-called coalition.

2. A function 𝑣 that associates with every nonempty subset of players 𝑆 of the set𝑁 a real num-
ber 𝑣(𝑆) (the payoff value achieved by the player set 𝑆).”

This definition is taken from [195].

In the sense of definition 3, the function 𝑣(𝑆) represents a payoff that is achieved by the set
of 𝑆 players in a collective effort. However, the effort put into achieving thisPayoff for

Common Actions
payoff—due to their

common actions—may differ for each individual in the group. Depending on the subset 𝑆 chosen
from the coalition, there might be individuals who—when working together—add disproportional
more value to the group than they would have cumulatively added as individuals in the subset 𝑆.
There might also be individuals who do not contribute any value to the task. This is where Shapley
values come into play, as Shapley values attempt to determine a fair split of the total payoff givenShapley Values by
the function 𝑣(𝑆), based on the average marginal contribution of each player in all possible subsets
𝑆 of player coalitions. [195] However, there is the requirement to define what a fair split is exactly.

Axioms for
Coalitional Game

The definition of a fair split suggested by Shapley values is based on axioms and given in definition 4.
Definition 4 is taken analogously from [196].

Definition 4. Let be 𝜑𝑖(𝑣) the split that player 𝑖 gets and 𝑣 the overall payoff in a game 𝕍, then a fair
split fulfills:

1. ∀𝑣 ∈ 𝕍 it holds ∑
𝑖∈𝑁

𝜑𝑖 = 𝑣(𝑁)

2. ∀𝑣 ∈ 𝕍 ∧ ∀𝑖 ∈ 𝑁 which fulfill 𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆) = 0 ∀𝑆 ⊆ 𝑁 it holds 𝜑𝑖(𝑣) = 0
3. ∀𝑣, 𝑤 ∈ 𝕍 ∧ ∀𝑖 ∈ 𝑁 it holds 𝜑𝑖(𝑣 + 𝑤) = 𝜑𝑖(𝑣) + 𝜑𝑖(𝑤)
4. ∀𝑣 ∈ 𝕍 ∧ ∀𝑖 ∈ 𝑁 ∧ ∀𝜈 ∈ ℝ it holds 𝜑𝑖(𝜈𝑣) = 𝜈𝜑𝑖(𝑣)
5. ∀𝑣 ∈ 𝕍 ∧ ∀𝑖, 𝑗 ∈ 𝑁 that are symmetric in 𝑣, it holds that 𝜑𝑖(𝑣) = 𝜑𝑗(𝑣)
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These axioms include that a player who did not add to the value acquired in the game 𝕍 does
not get rewarded afterward. Also, the axioms fulfill the intuition that equally contributing players
get equal rewards, as well as that consistency is ensured by the fact that all players’ splits add up
to the total payoff 𝑣(𝑁). Shapley values determine the split based on the previously mentioned
axioms and are introduced in the next section.

Shapley Values

The Shapley values can be determined using definition 5, which was taken analogously from [197].

Definition 5. The marginal contribution of an individual player 𝑖 ∈ 𝑁 for a game 𝕍with 𝑣 ∈ 𝕍 being
the payoff value is given by equation (2.79).

𝜑𝑖(𝑁, 𝑣) = ∑
𝑆⊆𝑁\{𝑖}

(|𝑁| − 1 − |𝑆|)!|𝑆|!
|𝑁|! (𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)) (2.79)

The interpretation of Shapley values is that the values represent the marginal added value Marginal Added
Value

(i.e. the
marginal contribution) to the game of the player 𝑖 in the coalition of players for all possible subsets
𝑆 ⊆ 𝑁 including player 𝑖, averaged over the number of players and the number of all coalitions
without the player 𝑖. [195]

Beyond the contribution of the Shapley
Interaction Index

individual player 𝑖, it is possible to describe the effect on the
interaction of player 𝑖 with an additional player 𝑗 using the Shapley interaction index as shown in
equation (2.80). [128, 198]

𝜑𝑖𝑗(𝑁, 𝑣) = (2.80)

∑
𝑆⊆𝑁\{𝑖,𝑗}

(|𝑁| − 2 − |𝑆|)!|𝑆|!
2|𝑁 − 1|! (𝑣(𝑆 ∪ {𝑖, 𝑗}) − 𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆 ∪ {𝑗}) − 𝑣(𝑆))

The interaction indices are related to the Shapley values as shown in equation (2.81). [128]

𝜑𝑖𝑗(𝑁, 𝑣) = 𝜑𝑖(𝑁, 𝑣) − ∑
𝑗≠𝑖

𝜑𝑖𝑗(𝑁, 𝑣) (2.81)

This also includes that summing a Shapley interaction index of two players 𝑖 and 𝑗 over one of both
players results in the Shapley value for the other player. This is very similar to the construction of
the Shapley values 𝜑𝑖 of individual players, which add up to the total payoff value.

After this small dive into coalitional game theory, it remains to discuss how Shapley values
should contribute toMLmodels’ explainability. If the individual players are interpreted as single fea-
tures, and the set 𝑁 contains all features of a data set an ML model has been trained on, then the
ML model can be related to the payoff value function 𝑣(𝑆). While this relation is true in principle,
there is more to it than simply replacing the payoff value function with the model, as discussed in
the following section. In fact, the SHAP software package is capable of computing Shapley values
with low-grade polynomial time Optimization for

Tree-Based
Models in SHAP

for tree-based models using knowledge about the structure of the
underlying decision tree models. This is useful, as going through all possible combinations of fea-
tures can be computationally extremely expensive for large feature sets and actually presents as an
NP-hard problem. [199]
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However, in principle, SHAP can be usedmodel-agnostic but with dedicated implementations
for certain models, including tree-based models, linear models, and DNN models. [128]

SHAP Software Package

As included in the name of the SHAP package (Shapley additive explanations), Shapley values are
used to explain ML models additively. The meaning of this additive propertyAdditivity can be understood by
looking at equation (2.82). For this equation, may 𝑓(𝒙) be the model to be explained, 𝒙 a feature
vector, and𝑋 the set of all features. [128, 200]

𝑓(𝒙) = 𝔼[𝑓(𝒙)] + ∑
𝑖∈𝑋

𝜙𝑖(𝑓(𝒙), 𝒙) (2.82)

In equation (2.82) the function 𝜙𝑖 denotes the SHAP value attributed to the feature 𝑖. The SHAP
values are based on the concept of Shapley values but denote the conditional expectation function
corresponding to the model 𝑓(𝒙). [200] Hence, SHAP values give a measure of the contribution
of each feature to the shift of each prediction of the model relative to the expectation value. All
the shifts combined then result in the overall prediction. In fact, SHAP has built-in visualization
routines that allow the user to use SHAP values for both local (single data-point) [201] and global
understandingLocal and Global

Explanations
of themodel’s prediction. Additionally, interactions of features can also be visualized

in order to understandmodel predictions. When using SHAP, it is important to understand that SHAP
does not detect causation between features and target quantity but rather explains which features
gave rise to the model’s prediction to which degree. This is intuitively clear, as the trained model is
not identical to the underlying real-world distribution of the target variable.

SHAP is also capable of approximating SHAP values when the exact computation procedure
is not feasible. However, this approximation assumes that features areSHAP Values

Approximation
for Independent

Features

independent of each other.
This translates to the interpretation that for all features, the Shapley interaction indices would be
zero everywhere except on the diagonal. This is, however, unlikely for a model that is trained on
real-world data with more than a single feature. [200]

Another consideration before applying XAI techniques in general regards the model’s accu-
racy. In fact, while linear regression models appear to be easily interpretable, a simple linear model
might not capture the underlying relations contained in the training data enough to lead to a mean-
ingful interpretation. This actually relates to the bias-variance trade-off,Bias-Variance

Trade-off
as low bias models tend to

be more explainable. [128, 202]

2.5.4 Availability of Data

In many cases, when dealing with materials screening applications, the data used for a research
project is often not (or not entirely) available at the beginning of the study. Usually, the data is either
acquired during the project or becomes available sequentiallySequentially

Available Data
over time. There are different ways to

deal with these particular circumstances. The simplest and most obvious procedure is to retrain the
used model occasionally as the data set is updated. However, this approach is far from systematic.
Another approach would be onlineOnline &

Incremental
Learning

learning. [203] In online learning, ML models continue to learn
as data becomes sequentially available. This is also known as incremental learning, as the models
are not retrained on the entire data set but on the additional data that became available. [204]
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However, as it was feasible to retrain the acquired models entirely, including the additionally
acquired data, for the course of this doctoral project, it was not necessary to implement incremen-
tal learning. Hence, the method of choice in the cases where data became available sequentially
during this project was the batch learning method, which will be introduced in the following section.
However, if the data characteristics are not expected to change rapidly compared to the training set,
the flexibility and adaptive capabilities an online learning algorithm provides are not required.

Batch Learning

In batch learning—opposite to online learning—additional data that becomes available posterior to
the training process of anMLmodel, themodel is not trained incrementally on the additionally avail-
able data only but retrained on the entire available training data set. This implicates an increased
computational cost for the retraining process Retraining on

Updated Data
than in an online learning scheme. However, depend-

ing on the use case, this is outweighed by the fact that after retraining the model on the updated
data, an evaluation of the retrained model is performed, intended to serve as an accuracy-ensuring
measure. It further allows for tracking the model’s predictive power as the amount of training data
increases. For online learning approaches with ANNs, it is known that a phenomenon called “catas-
trophic interference” [205] Catastrophic

Interference
can occur, where a model forgets a previously learned relation when

learning incrementally. This can lead to a significant increase in prediction errors. A scientific appli-
cation requires continuous monitoring of a model’s performance, which is easier to maintain in the
batch learning approach. The schematic workflow of batch learning is shown in Figure 2.27. [206]
Batch learning can also be used as an iterative procedure that is performed as the necessity arises
from an additionally acquired amount of data. The paradigms, which indicate when a model should
be retrained, vary. Possible strategies can include a certain time since the last retraining step, the
number of newly accumulated data points, and milestones in the research projects. The most ex-
treme case would be if each additional data point acquired immediately triggers the model to be
retrained on the entire data, including the new data point. Automatized MLOpsmodel training and eval-
uation cycles can be implemented using Machine Learning Operations (MLOps) [207] techniques,
which aim to deploy ML models and predictions in an automated, continuous fashion. Using auto-
mated training and evaluation pipelines allows real-time tracking of resulting predictions and the
predictive performance with each change to the model or the acquired data. Continuous tracking
allows formore informed decisions regarding using the trainedmodels. For example, a continuously
monitored test performance can indicate whether the retrained model’s performance is indeed in-
creased compared to the previous model. It can thus indicate whether switching to a retrained
model is advised. [206, 207]

Missing Data

Besides the constraint of more data becoming available at a later stage during a research project, it
can also happen that features of individual data points or labels are missing in a given data set. If
it is possible to obtain the correct (or at least meaningful by e.g. interpolation [208, 209]) entries
for the missing values, this is, of course, preferred. However, as this is not always possible, it can be
necessary to employ Sparsity Aware

Algorithms
sparsity awareML algorithms (like e.g. XGBoost [125]) if it is likely that possible

applications of the model will require the model algorithm to deal with missing values. [210]
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Figure 2.27: Schematic depiction of a batch learning workflow, which includes a trained model and addi-
tional datawhich is intended to be used as an addition to the existing training data. Typically,
until the retrained model has been evaluated and validated, the predictions of the previous
model are used. Cylinders depict the different reservoirs of data.
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In the following sections, three different applications of the previously discussed methods
within the field of materials science are presented. These studies represent the results gathered
during this thesis and are related to different physical phenomena and systems. Each section can
be considered as a project representing different use cases of data analytics and ML in the field of
computational materials science.
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3.1 Predicting Critical Temperatures for Materials Screening

The critical temperature, introduced in section 2.3.1, is a complex quantity to predict as the quantity
depends on material-specific properties, including e.g. structure, chemical composition, magnetic
state, magnetic moments, and interatomic interactions. However, the critical temperature is rele-
vant to industrial applications due to the fact that in the transition from a temperature above the
critical temperature to above, a phase change from a magnetic (e.g. FM, AFM, spin-spiral, etc.) to a
non-magnetic state occurs in the material. The critical temperature is closely related to the concept
of magnetic stability, as the magnetic ordering is lost below this temperature. [211] Heusler alloys
[212, 213] are known for multiple interesting properties including, but not limited to e.g. super-
conductivity [214], half-metallicity [215, 216], permanent magnets free of rare-earth metals [217],
thermoelectricity [218], high-temperature magnets [14] and piezoelectricity [219].Applications of

Heusler Alloys
Heusler alloys

are known to have applications as magnetic shape memory [220] and tuneable topological insula-
tors [221]. The combination of magnetic stability (i.e. reasonably high critical temperature) and
half-metallicity in a single compound gives rise to applications in the field of spintronics for this
compound, as this would allow spin-polarized charge currents, so-called spin-currents [222, 223],
to occur and potentially be stable atSpin-Currents operating conditions. This is inherently relevant for applica-
tions such as spintronics-based storage devices. [224–226] Hence, this combination is particularly
interesting. This thesis’s first results section discusses the key properties of magnetic Heusler alloys
with high critical temperatures. The occurrence of half-metallicity in Heusler alloys is discussed in
section 3.2.

In the material science community, efforts were made to predict the curie temperature for
more generalmaterial classes thanHeusler alloys. [227, 228]While these studies useML to predict a
special case of the critical temperature, the Curie temperature, they are also very different from the
results presented in the following. The aforementioned studies used a few thousand data points of
experimental results while simultaneously restricting the field of interest to FMmaterials. However,
typical challenges in materials science simulations include the sparsity of dataSparsity of Data , as acquiring data can
be expensive. This also holds for the critical temperature, as described in section 2.3.1, due to the
necessity to perform both the ab initio computation of a compound and the MC simulation. There
has been an earlier study [12] which used a regression based on experimental results in conjunction
with DFT to predict compounds with large critical temperatures. However, this work focuses on
Heusler alloys consisting only of transition metals. Also, existing work on feature importance for
critical temperature estimation is restricted to subgroups of magnetic Heusler alloys like e.g. to
alloys containing only transition metals and rare-earth elements. [229, 230]

The results presented in the following should be seen as a small-scale example of how to use
existing ab initio results in combination with ML methodologies using typical materials simulation
data set sizes (A few hundred data points), which include many features, in order to:

• Approach predictive modeling tasks with high-throughput materials screening applications in
mind.

• Reuse existing data purposefully beyond a simple analysis.Data Reuse

• Discussing the applicability of a materials screening approach on small data sets, with and
without ab initio-originated results present.

• Explain model predictions and potential patterns discovered in the data using state-of-the-art
XAI methods.
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The results presented in this chapter are partly published in [231]. The data [232] processed from
the original data set [14] and most of the code [233], which was written to obtain and visualize the
results discussed in the following, are publicly available.

3.1.1 Heusler Alloys

Heusler alloys represent a subgroup of the extensive phase space in materials sciences. This sub-
group exhibits a large amount of structural homogeneity. Quantities

Required to
Describe a
Heusler Structure

This homogeneity allows a complete
structural description of an individual ordered alloy using very few quantities as the lattice constant,
the component elements, and the symmetry group of the alloy. However, disordered Heusler com-
pounds exist beyond that, which can occur due to e.g. present impurities, vacancies, and atomic
displacements in the corresponding alloy structure. [234, 235] Compared to their ordered counter-
parts, disordered alloys can exhibit different material properties. [236] This concludes that disor-
dered Heusler structures and properties that emerge due to the structural disorder are of interest
to the scientific community. Disordered

Heuslers
In fact, the occurrence of structural disorders in real-world compounds

depends on multiple factors. Such include the growth conditions of the material and the differ-
ence between the free energy of the ordered and the disordered structures. The latter represents
a competing effect of the free energies and is also influenced by the compound’s elemental compo-
sition, which explains why there are configurations for which either the ordered or the disordered
structures are energetically favored. Beyond that, temperature-dependent order-disorder phase
transformations are known. [237] Temperatures for which a structural phase transition is observed
indicate that the energetically lowest structures are different below and above this particular tem-
perature.

Given some transition metals X and Y and an element Z from the main groups 13 to 15 from
the periodic table, ordered Heusler alloys (sometimes referred to as full Heusler alloys orL21 phase)
follow themolecular formula X2YZ. [212, 213] For an inverse Heusler alloy (XA phase), themolecular
formula is the same, but X is taken from themain groups 13 to 15 and Z and Y eachdenote a transition
metal element. In the case of a structural half Heusler (C1𝑏 phase), the elements are chosen as in
the L21 phase, but the molecular formula is given by XYZ. [238] Beyond that, modern solid state
physics also recognized quaternary Heusler alloys given by the molecular formula X′ XYZ, while the
elements are chosen from the periodic table similarly as in the Structural

Families
L21 phase case, but X

′ is also chosen
from the transition metals. An overview of the discussed structure types is given in Figure 3.1.

There are different types of quaternary Heusler structures known—typically denoted as Y
phase. These types can be characterized by the order in which the constituting elements are aligned
on the conventional unit cell diagonal. [240, 241] Figure 3.1 also illustrates how the knowledge of
the constituents, the lattice constant, and the structure type completely define the crystal structure.
This structural homogeneity Structural

Homogeneity
restricts the phase space of possible Heusler-like materials, which sim-

plifies the feature space, compared to general 3-dimensional solid crystals, when it comes to mod-
eling and predicting quantities. This allows for accurate predictions based on only a fraction of the
required data, which would be necessary to achieve similar accuracies on the feature space of the
entire materials science chemical and structural landscape. However, including disordered Heusler
alloys already starts to lift the constraint imposed by the structural homogeneity due to the num-
ber of possible disorders and disordered structures. Often, disordered Heusler structures are also
characterizable by phases.
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(a) Structure of a full (L21) Heusler alloy.
This structural depiction is based on Cu2MnAl.

(b) Structure of an inverse (XA) Heusler alloy.
This structural depiction is based on Hg2CuTi.

(c) Structure of a half (C1𝑏) Heusler alloy.
This structural depiction is based on MnNiSb.

(d) Structure of a quaternary Heusler alloy.
This structural depiction is based on CoFeTiGe.

Figure 3.1: Depiction of different Heusler alloy structures. The color code used for the atoms in the
individual depictions is X′XYZ. The depictions were created using the VESTA software. [239]
The structure data of the mentioned compounds was taken from the Materials Project. [94]

For example, the A2 phase is known, in which the X and Y or the X and Z sites are intermixed
in comparison to theL21 phase. Another disordered phase is given by the B2 phase, where the sites
Y and Z are occupied randomly by atoms that would be located in these sites given the ordered L21
phase. [242] Also, binary Heusler alloys are known, which consist of only two elements. For binary
Heusler compounds, the molecular formula concerning the L21 sites is given by X2XZ and referred
to asD03. [243]

3.1.2 The Database

The JuHemdJuHemd
KKR-GF-Based

[14] is a database of Heusler alloy’s critical temperatures. It contains published experi-
mental results and such originating from ab initio KKR-GF calculations combined with an MC-based
simulation approach—as discussed in section 2.3.1—based on the crystal structures from the ex-
perimental publications. [14] Alongside the critical temperatures, structural information like the
symmetry group, elemental composition, and lattice constant are stored in the database. Also, the
theoretical magneticmoments of the individual atoms, which result from the first-principles calcula-
tions, are included. Counting ordered and disordered Heusler structures, half Heusler alloys,776 Different

Structures
inverse

Heusler compounds, and quaternary Heusler formations, the database contains 776 unique crystal
structures.
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The counts of the structural phases’ characterization for the compounds contained within
the JuHemd is shown in Figure 3.2. The total contains 61 different symmetry group configurations
of ordered, disordered, and fractionally disordered configurations included in the JuHemd. The frac-
tionally disordered configurations represent 17 individual structures and symmetry groups.

Figure 3.2: Overview of proportions of the structural phases contained in the JuHemd. The phases con-
tained in the JuHemd include ordered structures (L21, XA, Y and D03) as well as disordered
structures (mainly A2 and B2). It can be seen that the regular and ordered Heusler phase L21
is the most prevalent in the database. In cases of fractional disorders, which only represent
a minority in the JuHemd, these phases are counted as “other” together with unlabeled sym-
metry groups and special minority cases like e.g. the noncentrosymmetric group R3m and
the structure groups B1 (NaCl structure) and B32 (NaTi structure).

The data stored in the database is not exclusively given in numeric values, but the database
also contains string and character data type entries for each compound, which describe and classify
the structure of each alloy. Heterogeneous

Data Types
Additional metadata like e.g. a label assigned to an alloy based on the

chemical composition, where the published experimental results can be found, and when the re-
sults were published are stored within the JuHemd. To ensure that all potentially relevant features
of a given structure are extracted from the data, some of the metadata needed to be processed as
well to include additional features in the subsequent modeling and analysis steps. MetadataIt is worth men-
tioning that the reported experimental structure results may vary for identical structures. This may
be the case when the published lattice constant of a given alloy slightly deviates from an identical
previously reported structure due to measurement inaccuracies. Hence also the computed critical
temperature differs based on the deviations of the structural setup. Only themost recently reported
structure and the corresponding computation were considered in such cases. As the theoretical crit-
ical temperature is computed in a Two-Step

Process
layered process in which first the Heusler structure—based on the

empirically reported structure—is calculated using a KKR-GF DFT calculation, which also computes
the pairwise exchange coupling parameters Exchange

Parameters
for each alloy. The exchange parameter can then be

used to calculate the critical temperature further using the mentioned MC approach. This two-step
process is shown in Figure 2.8.
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The ab initio results in JuHemd have been computed using both an LDA-based [244] XC func-
tionalExchange-

Correlation
Functionals

as well as GGA-based [245] calculations. As a result there are two theoretical predictions for
the critical temperature contained in the JuHemd for many compounds. As some systems are easier
to compute with either of both functionals, computations can be successful for one functional but
fail for the other. This explains why there are not the same number of theoretical results in the
JuHemd for both functionals. As the quality of experimental critical temperature results is hard to
determine and varies drastically from publication to publication—primarily for reasons of purity of
the measured compoundMeasurement

Compound
Purity

—the following analysis and discussion are based on the theoretical pre-
dictions for the critical-temperatures only.

3.1.3 Data Wrangling

The JuHemd contains many entries for each compound data point. Some entries are given as simple
numeric values (e.g. lattice constant, ab initio computed total energy, and the critical temperature
itself). Other entries are given as more complex data types which are encoding information, some
of them such that different properties or quantities have been consolidated (e.g. symmetry group,
system magnetic structure factors, and the system sites).

The heterogeneity and complexity of the stored datamade extensive preprocessing necessary
prior to any further usage of the data. During this preprocessing step, additionalmaterial descriptors
have been constructedConstructed

Descriptors
using the available information. Since disordered Heusler alloys are included

in the JuHemd, constructing certain features is more complex than if only ordered structures had
been included. For these disordered alloy systems, the site-specific fraction of occupying elements
in the compound is a quantity that influences many descriptors that could be constructed. For ex-
ample, the total magneticmoment is computed by taking themoments of the individual atoms from
the KKR-GF calculation and multiplying the moment with the fraction of the atom’s occurrence on
each site. This is simple for regularly ordered Heusler alloys and inverse Heusler structures. How-
ever, extra handling is required for half Heusler C1𝑏 phases, quaternary Heusler alloys, and also
for disordered Heusler-like structures. This affects e.g. the total magnetic moments, the absolute
magnetic moments, and the constructed atom densities. The aforementioned densities include the
constructed density of FM atoms (Fe, Ni, and Cobalt) within the compounds. Using the fraction of
an individual element in the compound as a descriptor allows us to figure out later which elements
on the Heusler sites have an increasing or a decreasing impact on the model’s prediction for each of
the compound’s critical temperatures. The concept of SHAPPrediction

Interpretation
values, as introduced in section 2.5.3,

is used to conduct this discussion. As an ML model bases the prediction on the relations learned
by the data it was trained on, this allows us to understand both the prediction and discover the
relations represented by the training data.

Furthermore, incomplete data points were removed during the data processing step. Unfor-
tunately, the JuHemd contains multiple instances of missing data, e.g. if the initial first-principles
calculation does not converge and hence does not yieldmagnetic properties, then only the structure
andMissing Data

Points
the collected experimental data might be contained in the JuHemd. [14] An approach to handle

missing data would be to interpolate missing features during preprocessing. However, given the
severity of features that were abundant in these cases (e.g. the fractions of atoms in the compound,
magnetic moments), an interpolation was not possible with reasonable accuracy without additional
information.

3 Results68



Furthermore, supplement atomistic descriptors from the literature and the corresponding
compound totals—weighted by the atomic fraction of occupation—have been added during the
preprocessing step. By including the totals, no assumptions are made beforehand if it is physically
reasonable to sum e.g. the atomic numbers or not, but leave it to the feature Feature

Importance &
Impact

importance, impact
analysis and the usedmodel to determine if a given feature has predictive value or not. An overview
of features, including a short description for each feature, directly obtained from the JuHemd with-
out extensive processing, constructed descriptors, and additionally included atomistic quantities
with their corresponding totals is given in Table 3.1. The index 𝑖 denotes a site in the set of inequiv-
alent [246] sites contained in the alloy structure. The summation over the lattice sites 𝑖 included in
Table 3.1 denotes the summation over all inequivalent alloy sites. For the magnetic moments, the
index 𝑙 refers to the position of occurrence of the element the magnetic moment originates from
in the molecular formula of the alloy. Hence, for e.g. the L21 and XA phases 𝑙 ∈ {1, 2, 3} but
for phases, like e.g. the quaternary Y configuration, with four unique elements contributing to the
structure 𝑙 ∈ {1, 2, 3, 4}.

By looking at Table 3.1, it is clear that considering all descriptors will introduce many features
to the ML models. While some descriptors will likely be highly correlated with each other, the num-
ber of features used here already suggests an approach using anMLmodel that can either shrink the
coefficients of less relevant features (e.g. such as LASSO) or determine the most impactful features
with regard to the prediction (like e.g. tree-based models). It is commonly known as “one-in-ten-
rule” One-in-Ten-Rule[247] that—in order to avoid overfitting and the learning of spurious relations, i.e. such that
are not causally related, within the data—there should not be more than one feature included for
every 10 data points in the training set. While this rule is considered a best practice, it is not inher-
ently true for all models, as e.g. the LASSO [144] is used to perform a selection of essential features
[248] and hence, can handle more features than indicated by the “one-in-ten-rule”. However, this
has to be kept in mind, as other measures capable of reducing the potential overfitting might be
needed in this case. In Table 3.2, the features in the processed Heusler data set are grouped by their
origin, either directly extracted from the JuHemd, constructed out of JuHemd information, or added
by external libraries [249] based on the constituting atoms contained in the compound. Table 3.2
shows that the total number of descriptors adds up to 119, which are available to amodel to predict
the target quantity, the critical temperature.

At the beginning of this PhD project, only 162 compounds (state on 8th of December 2020)
representing exclusively ordered structures were already computed at that time. The amount of
data thatwas collected and ultimately published increased over time. With each iteration of the data
set, the data processing, theMLmodeling, and the interpretation of themodel predictions using XAI
were refined. Using the published version of the JuHemd [14], the original number of structures of
776 reduces to 387 post-processing Post-Processing

Data Amount
for which the LDA XC [244] functional has been used in the ab

initio computation process. 408 structures are extracted post-processing, computed using a GGA
XC [245] functional. These 408 structures only include magnetic compounds from JuHemd with a
critical temperature greater than zero.
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Label Description

lattice_constant Lattice constant of the Heusler
resval 𝑇c value in Kelvin
etotal (Ry) Total energy of the compound 𝐸Tot
formula Chemical formula of the compound
Ferromagnetic Density Fractional density of FM

elements (Fe, Ni, Co) in the Compound
Rare earth Density Fraction of rare earth components

in the Compound
Symmetry Code An integer encoding the compound’s symmetry

group by occurrence in the sorted array of all
unique symmetry groups in the JuHemd

Individual Magnetic Moments Individual magnetic moments𝑚𝑙 of all
constituent atoms, ordered by their occurrence 𝑙
in the compound’s molecular formula

Absolute Magnetic Moments Individual absolute magnetic moments |𝑚𝑙| of all
constituent atoms, ordered by their occurrence 𝑙
in the compound’s molecular formula

Total magnetic moment 𝑀 = ∑
𝑙

𝑚𝑙

Sum of absolute magnetic moments 𝑀Abs = ∑
𝑙

|𝑚𝑙|
Magnetic State Four digit integer encoding the magnetic state

(FM, ferrimagnetic, AFM,
and spin-spiral)

Stochiometry Five digit integer encoding the
stochiometry of the compound

Density by Atomic Number Fractional density of each atomic number is
encoded by an individual descriptor

Atomic Number Atomic number of the constituents 𝑍𝑖
Number of Neutrons Number of neutrons of the constituents
Nominal Mass Nominal mass of the constituents atoms
Number of Electrons Number of electrons of the constituents
Exact Mass Exact mass of the constituents atoms
Atomic Radius Atomic radii of the constituents atoms
Number of Valence Electrons Number of valence electrons of the

constituents atoms 𝑒val

Covalence Radius Covalence radius of the constituents atoms
Period Period number in the PSE of the constituents atoms
Electronegativity Electronegativity of the constituents atoms 𝜒(𝑖)

Van der Waals Radius Van der Waals radius of the constituents atoms 𝑟vdw
𝑖

Electron Affinity Electron affinity of the constituents atoms 𝐸ea
𝑖

Table 3.1: List of entries in the processed data set by their label, including a short description. This table
is adapted from [231].
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Directly extracted Features Constructed Features Atomic Features

lattice_constant† Magnetic State† Atomic Number*
resval‖ Symmetry Code† Number of Neutrons‡
etotal (Ry)† Density by Atomic Number†† Nominal Mass‡
formula† Ferromagnetic Density† Number of Electrons‡

Rare earth Density† Exact Mass‡
Total magnetic moment† Electron Affinity‡
Stoichiometry† Atomic Radius‡
Individual Magnetic Moments* Electronegativity‡
Absolute Magnetic Moments* Covalence Radius‡
Sum of absolute
magnetic moments† Period‡

Number of Valence
Electrons‡
Van der Waals
Radius‡

† One descriptor per compound
‡ Five descriptors per compound (Including the compound total)
†† 31 elemental densities per compound and a single density for unoccupied sites
* Four descriptors per compound
‖ target quantity 𝑇𝑐

Table 3.2: Grouping of the descriptor labels by the way they were obtained. For those acquired directly
from the JuHemd (left column), the label from JuHemd has been used. Each descriptor is
accompanied by the corresponding number of individual entries, per compound, which are
added to the processed data set. Cumulated, the processed data set contains 119 individual
features.
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It was necessary to define a cutoff to distinguish which compounds are considered magnetic.
This definition had to include a plurality of possible magnetic configurations, like e.g. FM and AFM.
Hence, it was necessary to define this cutoffMagnetic Cutoff independent of the net magnetization within the unit
cell, as the net magnetization of ideal AFM structures is vanishing. In this application, a compound
is considered magnetic if it fulfills equation (3.1). Using the sum of the absolute moments over all
atomic occupants, 𝑖 ensures that neither AFM states are missed and compounds containing only
a single magnetic site occupant are included. However, both criteria, the magnetic cutoff and the
exclusion of compounds with a critical temperature of zero, can easily be changed in the data pro-
cessing script [233] to ensure that these criteria can be adapted to different research needs in the
future.

∑
𝑙

|𝑚𝑙| > 0.1 𝜇𝐵 (3.1)

The ML-based analysis and model evaluation results vary slightly for the data sets based on
the two different XC functionals regarding model performance. However, more training data for ML
models is generally preferred, as more training data potentially increases the model performance
andLDA + GGA

Data
generalizability as a larger data amount is reducing the chances of overfitting to occur. [247,

250, 251] Therefore, the results that were computed using the GGA XC functional during the ab
initio KKR-GF computation are discussed in the following.

The processed compound’s data collection has been made publicly available [232] in the cu-
rated material’s science database Materials Cloud. [252] The key differences of this publication
compared to the JuHemd include the following:

• The data has been cleaned, in the sense that incomplete data points have been removed.

• Constructed descriptors have been included, which were deduced from JuHemd but not di-
rectly available from the original database.

• Every feature contains a numeric value for every compound,Numeric Feature
Values

except for themolecular formula.

• The stored data is displayed as more human-readable in rows and columns.

• As the publication only contains theoretical predictions of the critical temperature, the meta-
data from the empirical publications was not included.

However, the described data cleaning process also creates some artifacts. The construction
of descriptors is performed before incomplete data points are removed. This is due to the fact
that in order to construct the descriptors for each alloy, the processing script iterates sequentially
over all compounds in the JuHemd, as the individual structures are also stored sequentially in the
database. Therefore, all features are collected for a particular compound before going to the fol-
lowing compound. If a descriptor is unavailable for a structure, the data point will temporarily be
stored as incomplete. All incompletely stored structures are removed at the end of the processing
after collecting all available descriptors for each compoundDescriptor

Cleanup
. Hence, some elements contained in the

original JuHemd have no occurrence in the cleaned data. Therefore, elemental fractional densities
are present for these atomic numbers included in the processed data, which have a sample variance
of zero through the entire data set—which at the current version of the JuHemd affects 11 atomic
densities. If the JuHemd is extended in the future, these densities could turn into a meaningful
descriptor and should be included in the processed data set.
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As the data processing script is published [233], it would be easy to execute the corresponding
script for an updated JuHemd—assuming JuHemd maintains the current structure and retains the
existing keywords. Also, a structure ruled out due to incomplete data but completed in the JuHemd
in a future version would be included automatically.

Before the ML training process began, as the last step of processing the JuHemd data before
compiling the processed results, the zero variance features were removed as they are meaningless
to the model—as well as the underlying physics—and only would cost additional computing power
in the training process without adding any value to the model performance.

After thepreviously discussedprocessing steps, the distributionof critical temperaturesmatch-
ing the compounds which have a full descriptor set is shown in Figure 3.3.

Figure 3.3: Post-processing distribution of critical temperatures in the GGA data extracted from the
JuHemd. This depiction of the critical temperature distribution has been generated using
the GGA data set. However, the LDA distribution looks very similar, as can be seen in ap-
pendix A. This figure is adapted from [231].

From Figure 3.3, it can be seen that a large proportion of the critical temperatures contained
in the processed data is located below 400 K, which means that a significant amount of compounds
is located below the temperature range in which a real-world application would be considered as
briefly discussed in section 2.1.1. For increasing temperatures, the trend shown in the histogram
in Figure 3.3 is that higher critical temperatures are less likely when a random compound from the
data set is chosen. Ultimately, when crossing the 1100 Kmark, only very few critical temperatures
lie above that. In fact, there is a single compound with a critical temperature located above 1500 K
in the processed data set. A gap larger than 200 K exists between the compounds with the highest
critical temperature. It is easy to see that it is unlikely that a model can learn to predict this par-
ticular data point due to the fact that the data point’s critical temperature is located far from the
critical temperatures of the remaining data. If randomly assigned to a test set, the highest critical
temperature would represent a prediction that is entirely OOS.
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Due to these arguments, the data point corresponding to the critical temperature located
above 1500 K is removed as an outlier priorOutlier Removal to the training process. However, this data point is
located in the data publication [232] as it might be relevant for analysis methodologies and applica-
tions that differ from the prediction of critical temperatures using ML.

The distribution of atoms that constitute the compounds contained in the processed data per
site is shown in Figure 3.4.

Figure 3.4: Distribution of atomic numbers in the compounds extracted from the JuHemd database, with
color-coded lattice site positions, post-processing and after outlier removal. This depiction
of the atomic number distribution has been generated using the GGA data set. However, the
LDA distribution looks very similar, as can be seen in appendix A.

From Fig 3.4 it is obvious that a large proportion of the compounds contained in the database
contains 3𝑑 transition metal elements. The fact that 3𝑑 transition metals have a high prevalence is
not random. As the critical temperature is an inherently magnetic property, the elemental selection
of the JuHemd is biased towards magnetic elements. Hence, it is expected that theStrong Transition

Metal
Representation

3𝑑 transition
metal group, which contains the classical FM elements iron, cobalt, and nickel as constituents, con-
tribute to a significant proportion of the observed magnetic properties in Heusler-like compounds.
It is also known that manganese plays an important role in the critical temperature for ordered and
disordered Heusler alloy, which is the reason why in Figure 3.4 manganese is a constituent of many
compounds in the data set. [253–255]

After the data has been processed, the next step is to use the acquired processed data to
model the critical temperatures for high-throughput applications using lightweight ML algorithms,
as discussed in the following.
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3.1.4 Machine Learning Modeling

An ML modeling process requires multiple steps in the context of a research study. These steps
typically include:

• Defining a modeling goal and choosing an appropriate metric according to the selected goal

• Preparing the data to be compatible with the modeling goal and potential models

• Select models and subsequently select hyperparameters

• Evaluation of the model predictions on data which has neither been used for training nor
hyperparameter selection

In this section the previously discussed steps of theMLmodeling process are discussed with respect
to the data acquired from the JuHemd. Potential additional steps include e.g. retraining the selected
model with the chosen hyperparameters on the entirety of the available data post evaluation, per-
forming predictivemodeling, discussion of remarkablemodel predictions (Correct or incorrect), and
analysis of the properties learned by the model by using XAI.

ML Prerequisites

There are a few ML-specific prerequisites necessary before the actual modeling is started. As a first
step, the order of compounds is randomized to avoid any clustering of compounds in the training,
validation, or test set. A random seed has been set at the beginning of each program file for ev-
ery step that includes data randomization in this thesis. [233] Data

Randomization
This allows for the reproducibility

of results without waiving the advantages of randomization in data randomization. In this section,
the models that involve randomization, inherently in their architecture, are given a fixed seed. This
section of the results gathered within this thesis is the sole section that strongly involves models
that rely heavily on randomization, such as the random forest and the extra trees models. Hence,
specifying a randomization seed for the models was not necessary within the other result sections.

Asmentioned, the data will be split into training, validation, and test data sets. The individual
data sets’ ratios generally depend on the overall data amount of the given modeling task. Generally,
larger data sets are fine with smaller ratios for validation and test data, as even the small ratio still
includes several data points, allowing for a reasonable average score to be computed based on its
size. [256] However, the opposite is true for small data sets. [158] Data SplittingIt has established that a good
choice for small data sets like the one examined in this study is to use 60 % of the data for training
and 20 % each for validation and testing. This is easily achievable with the CV methods by holding
back 20 % of the data for testing and choosing to perform a 4-fold CV on the remaining data to
find suitable hyperparameters. After the splitting has been completed, the features of all data sets
are scaled according to equation (3.2) using the mean 𝜇Train

𝑗 and standard deviation 𝜎Train
𝑗 of the

training set for all individual features 𝑗 and Feature Scalingdata points 𝑖. While it is not strictly necessary to scale the
data for all ML models, it is known for some models to improve their predictive capabilities. [257]
Hence, the data which the models are trained on are given by the matrix constructed by 𝑧𝑖𝑗 using
the unscaled features 𝑥𝑖𝑗.

𝑧𝑖𝑗 = 𝑥𝑖𝑗 − 𝜇Train
𝑗

𝜎Train
𝑗

(3.2)
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After outlier removal and splitting of the data, the distribution of the critical temperature for both
the complete and the test data set is shown in Figure 3.5. One can see that, given the sizes of the
test data set, the range of the critical temperature in the complete data set is reasonably sampled
by the chosen test set. At this point, the data itself is prepared for the ML training process.

Figure 3.5: Post-processing distribution of critical temperature in the GGA data after outlier removal,
including the distribution of the test set. This figure is adapted from [231].

Defining Modeling Goals

The task of choosing amodeling goal boils down to the intended application of the trainedmodel. In
this particular case, this study aimed to gauge the capabilities of MLCapabilties of

ML
algorithms to predict a complex

magnetic quantity like the critical temperature on typical materials science data set sizes. However,
with a materials screening application in mind, in principle, a classification would be enough if the
critical temperature lies in the range where a technical application is reasonably possible. However,
a regression study is necessary formaterials design tasks, for which a specific value range of a certain
quantity is required. Knowing this, it is reasonable to explore both approaches on this data set and
compare the regression and classification performances by assigning a class to the regression mod-
els predictionsRegression and

Classification
on the test set. These classifications, derived from regressionmodels, are referred to

as indirect classificationmodels within this thesis. While this is not commonly done, it can be seen as
an additional sanity check for bothmodeling applications to see if both approaches yield similar pre-
dictive capabilities. This is especially interesting as determining the theoretical critical temperature
is given by a layered process, as seen in Figure 2.8. This leads to the intuitive question of whether
both layers (DFT and MC) can be replaced by an ML approach, which also includes the question of
whether the data available only from atomic and structural descriptors (As the DFT-originated de-
scriptors such as e.g. magnetic moments, magnetic states, and total energy are not available if the
DFT step is not performed this reduces the set of descriptors to a total of 107 features compared
to all the features listed in Table 3.2) is sufficient to predict a magnetic property such as the critical
temperature using ML models.
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However, besides replacing both steps, it would be imaginable only to replace the MC step
with ML-based methods and include the DFT-originated features. Also, the latter approach would
be favorable With and

Without DFT
Results

as theMC step consumes the same order of magnitude of computing time [253] as the
ab initio calculation. The different levels of invoking ML models into the modeling process of the
critical temperature are shown in Figure 3.6.

Magnetic
Heusler
Structures

KKR-GF Calculation
Step 1

KKR-GF Calculation DFT-Based
Features ML Model

𝐽𝑖𝑗

Intermediate Step

MC Simulation
Step 2

𝑇𝑐 or
Classification

ML Model
Single Step

Figure 3.6: Schematic depiction of the layered 𝑇c determinationwith differentML integration levels with
increasing incorporation of ML models and modeling complexity from top to bottom. Cylin-
ders depict where different data is collected during the multi-stage process. This figure is
adapted from [231].

Considering both the layered process required to determine the critical temperature and the
fact that both classification and regression approaches are examined, this leads to 4 cases to be
examined and evaluated for their practical applicability. The examined combinations are shown in
Figure 3.7.

ML Modeling Integration

MC→ML DFT + MC→ML

Regression Regression on
Full Feature Set

Regression on
Reduced Feature Set

Classification Classification on
Full Feature Set

Classification on
Reduced Feature Set

Figure 3.7: Depiction of combinations of modeling tasks to evaluate, which arise in this study from the
combination of either modeling a classification or a regression task and replacing either the
MC step with an ML model or both the ab initio and the MC step with a single ML model.
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However, still the choice has to be made, by which metric a model and the corresponding
hyperparameters should be chosen as well as how predictions on the test set should be evaluated.
It is not the goal of this study to optimize both hyperparameters and models to a great extent but
rather to explore the capabilities of ML models on a rather typicalGrid Search materials science data set and
a common materials screening task. There is only a small selection of hyperparameters included
per model, which allows us to restrict the selection process of the hyperparameters to a basic grid
search.

As already discussed in section 2.5.1, different metrics for classification and regression are
available. Given the discussed modeling goal for the regression task, the metric used in this study
to select the best estimator and hyperparameters using the 4-fold CV procedure is the coefficient
of determination (𝑅2) from equation (2.54). The coefficient of determination has been chosen as
employed metric as𝑅2 reflects how well theRegression

Metric
features reflect the change of the target quantity with

the given model. Hence, technically, the 𝑅2 metric should obtain the most meaningful model, in
the physical sense, even though the particular model obtained does not necessarily have a lower
prediction error than another model. However, the dimensionless 𝑅2 value is accompanied by the
MAE to determine how large a typical error for model predictions on unseen data would be. For
the model training and optimization, the MSE was used due to its convexity and differentiability, as
discussed in section 2.5.1 and 2.5.2.

The classes should be defined before choosing the appropriate metric for the classification
evaluation and model selection. As already discussed in section 2.1.1 and also mentioned in the
literature [258], an experimentally measured critical temperature of 400 K includes a decent buffer
zone compared to room temperature for technical applications. Hence, also considering potential
deviations by the ab initio + MC approach and additional errors introduced by the ML modeling
on top of the theoretical 𝑇𝑐 data, which might be present comparedClassification

Threshold
to the experimental critical

temperatures, the threshold for critical temperatures to be labeled as “High 𝑇𝑐“ was chosen to be
above 473.15 K which corresponds to 200 K above 0∘ C and hence is located around 180 K above
room temperature which constitutes a buffer zone. A compound with a critical temperature below
the previously introduced threshold is classified as “Low 𝑇𝑐“. Of course, this choice of threshold
represents a trade-off between including as many compounds that might be suitable for application
as possible and excluding those, for which the model would overestimate the modeled critical tem-
perature, while the actual experimental critical temperature does not allow an application within
operating temperature conditions.

Having the classes for the classification task defined allows us to make a well-founded choice
of metric. A few things have to be considered for this choice as discussed in section 2.5.1 and Ta-
ble 2.4, these include:

• From Figure 3.5 it can be seen that the classes, given the discussed threshold, are slightly
unbalanced, which means that the data considered is unequally distributed.

• Precision is essential, as a low precision would include false positives, leading to materials
being flagged as “High 𝑇𝑐“ while they are “Low 𝑇𝑐“ compounds. As the “High 𝑇𝑐“ classified
compounds in a materials screening application would be subject to further examination, this
would constitute a waste of resources on the false positive classifications.

• Recall is also essential, as a low recall would include the occurrence of false negatives in the
predictions. This translates to a significant amount of compounds with a potential application
due to their “High 𝑇𝑐“ being missed in a materials screening application.
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Hence, the F1 score was chosen, as the F1 score F1 scorerepresents the harmonic mean of precision
and recall; this metric is well suited tomeet both discussed requirements. Beyond that, the F1 score
is known to work well with unbalanced data. Alongside the test F1 score, the accuracy, precision,
and recall include additional dimensions to interpret the model’s performances.

Regression

To select a model that could be used to predict the value of the critical temperature in a high-
throughput materials screening setting, a plurality of models should be evaluated—following the
mentioned shotgun approach—in order to determine an appropriate model type which is match-
ing the data complexity, for the regression task, on this particular data set. An overview of the
models evaluated on both the complete and the reduced data set, which does not contain ab initio-
originated descriptors and hence skips bothmodeling steps for the critical temperature, as depicted
in Figure 3.6, is given by the models listed in Table 3.3.

Linear Non-linear Ensemble

LASSO K-Nearest Neighbors Random Forest Regression
LASSOLars Decision Tree Regression Extra Trees Regression
Linear Regression Gradient Boosting Regression

XGBoost Regression

Table 3.3: Overview of the models evaluated for the regression task using the training data on the pro-
cessed JuHemd data set. The models are grouped by their categorization as either linear, non-
linear, or ensemble predictors. As the K-Nearest Neighbors model and the LASSOLars model,
which combines the discussed LASSO model with the least angle regression (Lars), were both
not discussed in section 2.5.2, details on the model architectures and the underlying theory
can be found in [259–262] and [42, 144] respectively.

For all models listed in Table 3.3, except for XGBoost [125], the open source scikit-learn [114]
implementation has been used. This also holds for the models used in the later discussed classifica-
tion task as seen e.g. Table 3.6.

Using the 4-fold CV procedure and evaluating on 20% of the randomly selected test set—as
previously discussed—the CV and metrics results obtained from the different models including the
DFT-based features are shown in Table 3.4.

From Table 3.4 it can be deduced that the ensemble regression models outperform both
the linear and the non-linear models. Naturally, ensemble models also represent a group of non-
linear estimators; however, as ensemble models compile their overall predictions out of a plurality
of model predictions, they are often considered a distinct subclass of non-linear predictors. [263]
The insight that ensemble models are well suited for this task is not surprising, as ensemble models
are known to handle tabular data well. Tree Model’s

Performance on
Tabular Data

[124, 127] However, while it is not surprising, it could not
have been assumedbeforehand that ensemblemodels are capable of predicting a complexmagnetic
property like the critical temperature on such a small data set and with the large structural phase
space of ordered and disordered Heusler type alloys with a reasonable error, using the discussed
features.
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CV-Score Train𝑅2 Test𝑅2 Train MAE [K] Test MAE [K]
LASSO 0.66 0.78 0.66 101.78 121.61
LASSOLars 0.67 0.78 0.66 101.65 121.53
Linear Regression << 0 0.83 << 0 88.4 >> 1000

K-Nearest Neighbors 0.49 0.65 0.57 125.69 131.6
Decision Tree 0.55 1 0.64 0 123.35

Random Forest 0.73 0.97 0.81 34.86 93.35
Extra Trees 0.77 1 0.85 0.0 81.87
Gradient
Boosted Trees 0.77 1 0.84 0.0 82.14

XGBoost 0.69 1 0.79 0.2 93.43

Table 3.4: Regression CV and test evaluation results on the complete descriptor set, including descrip-
tors acquired by the ab initio computation such as magnetic moments, magnetic state, and
the total energy of the system determined using the KKR code JuKKR [62]. The models are
grouped similarly to the order in Table 3.3 into linear, non-linear, and ensemble predictors.
All values are rounded to the second digit after the decimal to avoid the impression that they
are meaningful, as the scores over the validation and test sets represent an average over less
than a hundred compounds. This digit convention is also used in the Table 3.5, 3.7, and 3.8.

As discussed in section 2.3.1, the DFT + MC-based calculation procedure error compared to
experimental values ranges typically around 10 % to 15 %. Considering the lowest MAE on the test
set (≈ 84 K) of the models in Table 3.4, it is clear that the ML-originated error will have a larger
deviation to experimental values for most of the compounds as this additional modeling layer adds
another source of errors. However, this error can be further decreased with more training data
available. Using the first iteration of the JuHemd, available for training, only including 162 ordered
compounds, the best achieved𝑅2 in CV at that time was about 0.25. This demonstrates the power
of ML models to scale their predictive power, modeling capabilities,Accuracy Scaling and accuracy with additionally
acquired data and also explains the improved (For all models except the linear models) test score
compared to the CV-score, as in the CV procedure—for each CV fold—only 60 % of the available
data was used for training but, to determine the test score 80 % of the data was used for training
the model which was chosen after a coarse hyperparameter optimization. The fact that the linear
models did not profit from the additional training data could be attributed to their limited learn-
ing capabilities and the non-linear relations determining the critical temperature. A discussion of
the non-linearity of this particular modeling task is included in section 3.1.5. While the improved
𝑅2 could also be a result of a particularly easy-to-predict test set—compared to the individual val-
idation sets in the CV process—this is unlikely as the data has been randomized before splitting it
additionally, other random splits have been observed, during this study, with comparable perfor-
mances. However, interpreting the 𝑅2-score on the validation and test set, it isData Quality remarkable that
77 % or respectively 85 % of the change of the critical temperature’s variance can be linked to the
included descriptors. This concludes that at least 15 % of the critical temperatures’ variance is not
sufficiently described using the available features. In this context, it is important to mention that
this result is dependent on the overall data quality. Therefore, parts of the critical temperatures’
unexplained variance could be caused by insufficient convergence parameters in either the DFT or
the MC calculation step.
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OverfittingTable 3.4 displays a significant amount of overfitting—lowbias and high variance—for allmod-
els except the K-Nearest Neighbors model. This can be intuitively understood, as the K-Nearest
Neighbors model determines a set of closest points within the training data to a point the model
should predict. Hence, the typical prediction of the K-Nearest Neighbors model represents an av-
erage of “close” data points from the training set. A consequence is that the model’s prediction
accuracy is highly dependent on the density of data points within the training set regarding the pre-
diction region. This, on the one hand, limits the model’s learning capabilities, as the model links
data points by their similarity rather than relating individual features to the target quantity. Still,
on the other hand, this particular model architecture reduces the likelihood of overfitting as the av-
eraging over multiple “close” data points prevents the learning of e.g. spurious correlations within
the training data. K-Nearest

Neighbors
The training𝑅2 is increased—bymodel construction—compared to the test𝑅2 as

the data points, which shall be predicted to determine the training𝑅2-score, is, of course, included
in the training set and hence contributes the correct 𝑇𝑐 value to the average.

The regularized linear models exhibit a significantly decreased amount of overfitting com-
pared to the tree-based models. Given the number of features in this data set, it is important to ap-
ply feature selection or regularization to extract only the meaningful descriptors rather than letting
every feature contribute to the prediction. This lack of feature selection and regularization explains
the simple linear regression’s poor CV and test performance. Every descriptor is fitted within this
model, regardless of the individual feature’s predictive power. Hence, the model’s performance on
unseen data is poor. In direct contrast, the LASSO model, which shrinks the modeling coefficient,

Linear Modelsdepending on the regularization parameter, of inferior (Compared to other features within the data
set) features to 0, shows far better generalization capabilities. Both regularized linearmodels exhibit
some degree of overfitting. Still, due to the limited model complexity, the overfitting—but also the
CV and test performance—is decreased compared to the tree-based models. The overfitting of the
tree-basedmodels could be decreased by an extended hyperparameter search, whichwould include
reducing the tree sizes (pruning) or increasing regularization parameters in the case of the ensemble
models. Generally, increasing the amount of training data would also assist in reducing the degree
of overfitting.

Summing up, ensemblemodels performbest in predicting the critical temperature value. The
corresponding prediction errors are reasonable on unseen data. It can be concluded that—given the
reduced computational time consumption compared to the computationally intensive DFT + MC
approach—ensemble models such as the extra trees regression model and the gradient boosted
trees regression model could indeed be used—especially with more training data—to predict the
value of a complex quantity such as e.g. the magnetic critical temperature. Runtime

Comparison
It is worth mentioning

that both steps, the DFT and the MC calculation, can take several hours, running highly parallelized
on one or more supercomputer nodes, each, while the ML training, hyperparameter optimization,
evaluation, and prediction on this particular data set can be done on a laptop within a few hours.

In Figure 3.8, the test predictions and relative residuals of the extra trees model are shown,
compared to the DFT + MC-based theoretical value of the critical temperatures. While metrics such
as the coefficient of determination and the MAE quantify a model’s performance, it is crucial to ex-
amine the predictions of a model carefully and hence gain an understanding of potential systematic
deviations Systematic

Deviations
. An example of such deviations in a model’s prediction can be seen when comparing the

prediction of the extra trees model to the LASSO model’s predictions, shown in Figure 3.9.
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Figure 3.8: On the left: Depiction of the extra trees regression model predictions, compared to the DFT
+ MC determined critical temperatures including the distributions for both axes quantities
(blue marginal histograms and lines, while the lines represent the smoothed distributions),
themean value (red dashed line inmarginal distributions), and the standard deviation around
the mean (red colored area in the marginal distributions). In this comparison, the red line
marks the “ideal” prediction, where the predicted value matches the test label. The blue
line represents a linear regression fitted to the blue data points, representing the compari-
son betweenmodel prediction and test label. The blue envelope around the linear regression
denotes a 95 % confidence interval, which was determined using an approach based on boot-
strapping. [264] On the right: Depiction of the relative residuals of the extra trees regression
model’s predictions over the range of all test labels. The dotted red line corresponds to a
LOESS [265, 266], and the corresponding blue envelope represents a point-wise computed
95 % confidence interval. These depictions are similar to [231].
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From Figure 3.8, it can be seen that there are two considerable outliers existing on the lower
end of the 𝑇𝑐 range. While the deviation would not be substantial in absolute values, the outlier
is significant in this relative depiction. Furthermore, the slope of the blue line fitted to compare
predicted labels to the true critical temperature labels is slightly lower than the ideal prediction
line in red. Overall, the extra trees regression model appears to model the critical temperature
appropriately. However, the model has a slight tendency to overestimate small values of the critical
temperature—which is supported by the fact that the slope of the line fitted to the predictions is
smaller than the slope of the ideal red line and the majority of relative residuals as well the locally
estimated scatter plot smoothing (LOESS) fit on the right of Figure 3.8 are positive for smaller test
𝑇𝑐 values. This overestimation is also what caused the mentioned outliers. However, starting from
approximately 200 K, the LOESS fit appears to remain close to the value of zero. This indicates
that large asymmetric errors Symmetric Errors

Above 200 K
—which would appear in the smoothed relative residuals—in either

direction seem to be absent for this model. While this is true for the extra trees regression model,
this does not hold for less complex models, such as the LASSO model, as seen in Figure 3.9.

Figure 3.9: On the left: Depiction of the LASSO model predictions, compared to the DFT + MC approach,
analogous to the left of Figure 3.8. On the right: Depiction of the relative residuals of the
LASSOmodel’s predictions over the range of the entirety of test labels, including the depiction
of a LOESS fit, analogous to the right of Figure 3.8. The left depiction is similar to [231].

For the LASSO model, it can be seen from the slope of the blue fitted line in Figure 3.9 that
themodel is not able tomodel the nuances of the critical temperature comparably to the extra trees
regression model. Also, the distribution of the predicted values is much more narrow and, hence,
more centered around the mean value. Therefore, extremely high LASSO

Predictions for
High & Low 𝑇𝑐
Values

and low critical temperature
values are predicted less accurately. From the relative residuals plot on the right of Figure 3.9, it can
be seen—in comparison to Figure 3.8—that the outliers at the low end of the 𝑇𝑐 range exhibit an
even more significant deviation from the actual labels. Also, the LOESS fit of the LASSO residuals
approaches the value of zero slower, exceeds it afterward again, and then continues to decrease
below zero. The sign change of the LOESS fit is located around the mean of the predictions, which
is clear evidence that a majority of values below the average prediction are overestimated, and a
majority of the values above the mean prediction are underestimated. This is another hint, besides
the metrics, that the LASSO model fails to model the critical temperature appropriately.
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While both depictions of Figure 3.8 and Figure 3.9 are excellent for determining systematic
issues within the individual model’s predictions for different segments of the critical temperature
range, a more macroscopic impression of the predictive performance is gained by examining the
residuals (or relative residuals) distribution. The kernel density estimationKernel Density

Estimation
[267, 268] of the relative

residual distribution for both models is shown in Figure 3.10. The kernel density estimation is used
to smoothen the distribution, as the low number of data points within the test set is insufficient to
shape a histogram similar to the probability density function of the residuals. Using a smoothing
Gaussian kernel, an estimation of the probability density function can be acquired using the kernel
density estimation.

Figure 3.10: Kernel density estimations of the relative residuals of the extra trees regression (left) and
the LASSO (right) model.

From Figure 3.10 the previously discussed shortcomings of the LASSO model at the task of
predicting the critical temperature on this data set, compared to a more complex ensemble model,
become even more apparent as the distribution’s main peak of the LASSO residuals is broader and
more asymmetric towards an overall overestimation of the predictions. Also, the outliers, visible
as bumps beside the main peak, are located further from the main peak, as indicated by the pre-
vious residual plot. For the extra trees regression model, the distribution of the relative residuals
is nearly symmetric at the main peak. A completely symmetric residual distribution would indicate
the absence of systematic deviations of the predicting model.

Beyond themodels trained on the entire set of descriptors, the samemodels were trained on
the reduced descriptor set, which excluded all ab initio obtained features. The results of the training
and evaluation are listed in Table 3.5.
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CV-Score Train𝑅2 Test𝑅2 Train MAE [K] Test MAE [K]
LASSO 0.31 0.58 0.63 142.29 129.92
LASSOLars 0.31 0.54 0.59 150.17 129.92
Linear Regression << 0 0.62 << 0 132.23 >> 1000

K-Nearest Neighbors 0.35 0.5 0.53 157.09 144.51
Decision Tree 0.3 1 0.5 0 127.62

Random Forest 0.56 0.95 0.75 45.3 95.33
Extra Trees 0.53 1 0.74 0.0 100.02
Gradient
Boosted Trees 0.57 0.94 0.72 52.07 94.52

XGBoost 0.55 0.93 0.69 57.78 100.11

Table 3.5: Regression CV and test evaluation results on the reduced descriptor set, excluding descriptors
acquired by the ab initio computation as magnetic moments, magnetic state, and the total
energy of the system. The models are grouped similarly to the order in Table 3.3 into linear,
non-linear, and ensemble predictors.

From Table 3.5, it is apparent that, again, ensemble models are performing best even on the
reduced set of features. However, from the CV-scores, it can be seen that the excluded features,
compared to the evaluation shown in Table 3.4, were essential to the modeling task, as the CV-
scores dropped significantly. This also translates to the scores for the test set and the corresponding
errors. This unanimous drop in the model’s performance results from the fact that the magnetic
quantities, which are closest related to the magnetic critical temperature, were taken out of the
feature set. Hence, themodels training on this reduced data set had the samemodeling task but less
information about the physical system. The models have to rely on structural and atomic properties
with magnetic information excluded. This increased modeling complexity Increased

Modeling
Complexity

transfers to the evaluated
model performances. The lowest MAE from Table 3.5 is about 15.5 % higher than compared to the
lowest MAE from Table 3.4. An additional observation that can be derived from Table 3.5 is that the
training scores of the majority of the ensemble models have decreased. Combined with the overall
decrease in CV and test scores, it is safe to say that the modeling task indeed became unanimously
harder for all models, even on the training set. This underlines the importance of the magnetic
properties to the critical temperature modeling. Again, the increase in scores comparing CV and
test scores can be explained by the fact that the test scores are evaluated on models trained using
a more extensive training database.

As in the previous, a detailed look is taken at themodel performing particularly well given the
metrics from Table 3.5. In this case, this is the gradient boosting regression model. Gradient

Boosting
Regression
Model

In Figure 3.11
the predictions, relative residuals, and the kernel density estimation of the probability distribution
density of the relative residuals of the gradient boosting regression model, trained on the reduced
feature set, for the test set are shown.
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Figure 3.11: On the upper left: Depiction of the gradient boosting regression model’s predictions, com-
pared to the DFT +MC approach, analogous to the left of Figure 3.8. The model was trained
under the exclusion of the DFT-originated features. On the upper right: Depiction of the
relative residuals of the gradient boosting regression model’s predictions over the range of
the entirety of test labels, including the depiction of a LOESS fit, analogous to the right of Fig-
ure 3.8. On the lower: Distribution of relative residuals of the gradient boosting regression
model’s predictions, which was smoothened using a Gaussian kernel density estimation.
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Various conclusions can be drawn from the depictions in Fig 3.11. First, comparing the predic-
tion to the ab initio + MC-originated critical temperatures on the top left of Figure 3.11 shows that
large outliers are present at both ends of the critical temperature range. This translates to the rela-
tive residual depiction, where a significant outlier in the small temperature region and one outlier
at the high end of the critical temperature in the residual plot can be seen. The outlier on the higher
end has Outliersan absolute residual value of about 800 K. Also, comparing the dashed red average line
on the marginal of the comparison depiction, it can be seen that the prediction’s average is lower
than the test range’s average. Hence, a systematic underestimation is present, which translates to
the relative residual depiction. From the kernel density estimation of the probability distribution
function of the relative residuals, it can be seen that the main peak is nearly symmetric with a single
significant outlier, representing the outlier from the lower end of the temperature range. The slope
of the blue line fitted to the prediction comparison to the test set is lower than e.g. the correspond-
ing fitted line from the extra trees regression model, which still had DFT-originated features present.

Slope of Fitted
Line

However, as also indicated by the asymmetric envelope, the certainty of the linear regression is infe-
rior to the corresponding line fit to the extra trees regression predictions in Figure 3.8. The significant
outlier on the high end of the critical temperature range also causes this uncertainty. Furthermore,
the LOESS fit remains below zero, starting at about 300 K. This again indicates a systematic under-
estimation. Systematic

Underestimation
It could also be concluded that in the upper half of the critical temperature range, the

prediction errors seem to be more significant in the direction of a lower temperature. Compared to
the kernel density estimation of the relative residuals of the extra trees regression model from Fig-
ure 3.10, the kernel density estimation of the relative residuals of the gradient boosting regression
model trained on the reduced feature set, themain peak of the distribution Wider Main Peak

Compared to
Complete
Feature Set

in Figure 3.11 is broader,
which is no surprise as the gradient boosting regression models performance metrics, quantifying
the predictive power and accuracy, already indicate the decreased predictive capabilities compared
to the extra trees regression trained on all available features including the magnetic properties.

Considering that the performance of the models, which were trained without the magnetic
descriptors, is considerably decreased and even significant outliers like those seen with the 800 K
residual can occur, this approach is probably not well suited for an accurate materials screening
approach. Hence, if the materials screening procedure should not depend on the DFT-originated
features, transforming the problem into a classification Moving to

Classification
Task

task and, therefore, simplifying themodeling
task might represent a suitable approach to enable a materials screening application that does not
rely on the output of DFT calculations.

Classification

Moving to a Class
Interpretation

classification task reduces the modeling complexity by construction, as the goal is not
anymore to predict a certain value but rather classify the critical temperature into high and low,
which corresponds to “potentially relevant” for applications requiring stablemagnetismat operating
temperatures and “likely not relevant” for such applications. The models used for the classification
task are listed in Table 3.6.
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Linear Non-linear Ensemble Indirect

Logistic Regression K-Nearest Neighbors
Classification

Random Forest
Classification

Extra Trees Classification
LASSO

Decision Tree
Classification

Extra Trees
Classification
Gradient Boosting
Classification
XGBoost Classification

Table 3.6: Overview of the models evaluated for the classification task using the training data on the
processed JuHemd data set. The models are grouped by their categorization as either linear,
non-linear, ensemble or indirect estimator. As the linear Logistic Regression model for classifi-
cationwas not discussed in section 2.5.2, details on themodel architecture and the underlying
theory can be found in [269, 270].

The group of “Indirect” classification models shown in Table 3.6 represent the previously
trained regression models, for which their predictions were classified according to the previously
mentioned classification thresholds. While it is unusual to use regression models and turn them
into classification models by simply labeling the predictions with aIndirect Models class based on a threshold, this
provides the opportunity to compare regression and classification models. This is useful as scores
for classification models are naturally elevated compared to regression models due to the more re-
stricted label space. Hence, the scores of the indirect models serve in assisting the reader to justify
the quality of the classification models.

The evaluation results of the classification models trained on the entire set of descriptors,
including the DFT-originated features, are shown in Table 3.7.

CV-Score Train F1 Test F1 Test Accuracy Test Precision Test Recall
Logistic Regression 0.82 0.91 0.86 0.89 0.85 0.88

K-Nearest Neighbors 0.66 0.85 0.88 0.91 1 0.78
Decision Tree 0.71 1 0.84 0.88 0.87 0.81

Random Forest 0.84 1 0.89 0.91 0.88 0.91
Extra Trees 0.82 1 0.91 0.93 0.91 0.91
Gradient Boosting 0.83 1 0.84 0.87 0.8 0.88
XGBoost 0.84 1 0.86 0.89 0.87 0.84

Indirect Extra Trees n/a. 1 0.88 0.9 0.88 0.88
Indirect LASSO n/a. 0.86 0.81 0.85 0.81 0.81

Table 3.7: Classification CV and test evaluation results of models trained on the complete descriptor set,
including descriptors acquired by the ab initio computation. The models are grouped into
linear, non-linear, ensemble, and indirect classification models.
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From Table 3.7, a few observations are apparent. It can be seen that the linear logistic regres-
sion model exhibits a similar performance as the much more complex ensemble models. Addition-
ally, comparing the train and test performances, it is apparent that the logistic regression model,
while reaching similar performance scores as the ensemble models, exhibits less Linear Model’s

Performance
overfitting than

the ensemble models. The K-Nearest Neighbors classification model, while not achieving a great
CV-score, displays the least degree of overfitting and increased performance compared to the re-
gression task. For the K-Nearest Neighbors model, it is apparent that the additional 20 % training
data, which were used before computing the test scores, had a significant impact on the model’s
predictive capabilities. Overall, the performance scores have improved compared to the regression
task, which reflects that the classification task poses a simpler task than the regression task. As the
indirect models were trained on the regression task, the model selection and validation used the
𝑅2-based 4-fold CV-score; the CV-score has not been included in Table 3.7 as well as Table 3.8, as
the score is based on a different metric and is hence not comparable to the other score contained in
the corresponding tables. Indirect

Classification
Performance
Similar to Direct
Approach

It can also be seen from Table 3.7 that the indirect classification models
perform similarly to the direct classification models of similar model type, i.e. the linear logistic re-
gression model and the ensemble models. In Figure 3.12, both the logistic regression model’s and
the extra trees classification model’s confusion matrices of the test set predictions are shown.
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Figure 3.12: Confusion matrix of the predictions on the test set acquired from the logistic regression
(left) and the extra trees (right) classification models trained on the entire set of features,
including such resulting from the ab initio computation step of the critical temperature 𝑇𝑐.

From the confusion matrices in Figure 3.12 it becomes apparent, as already suggested from
the metrics displayed in Table 3.7, that the ensemble model manages to lower the number of false
classifications by a factor of one-third compared to the logistic regression classificationmodel. While
the metrics provide an abstract understanding of the model’s performances, the confusion matri-
ces clearly depict the strong predictive capabilities of the classificationmodels on this particular task.
Only three out of 32 high 𝑇𝑐 compoundswere falsely classified as structures with low critical temper-
ature on unseen data. In a materials screening setting, this would translate to a high 𝑇𝑐 compounds
rate, which would 𝐹𝑛 Rate < 10 %be overlooked by the classification model of below 10 %. However, to screen a
compound, the DFT calculation would still be necessary in this approach. Training the models on
the DFT independent feature set and evaluating their performance using the discussed metrics and
methods leads to the results shown in Table 3.8.
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CV-Score Train F1 Test F1 Test Accuracy Test Precision Test Recall
Logistic Regression 0.68 0.75 0.75 0.79 0.7 0.81

K-Nearest Neighbors 0.6 0.8 0.88 0.91 1 0.78
Decision Tree 0.63 1 0.78 0.82 0.73 0.84

Random Forest 0.74 1 0.85 0.88 0.82 0.88
Extra Trees 0.74 1 0.84 0.87 0.8 0.88
Gradient Boosting 0.74 0.97 0.9 0.93 0.93 0.88
XGBoost 0.76 0.96 0.87 0.89 0.83 0.91

Indirect Extra Trees n/a. 1 0.92 0.94 0.94 0.91
Indirect LASSO n/a. 0.75 0.84 0.88 0.84 0.84

Table 3.8: Classification CV and test evaluation results of models trained on the reduced descriptor set,
excluding descriptors acquired by the ab initio computation. The models are grouped into
linear, non-linear, ensemble, and indirect classification models.

As can be seen from Table 3.8, the CV-scores of all trained classification models dropped
unanimously. While this is expected, as the modeling complexity is increased with the magnetic
descriptors withheld from the models, it is interesting to observe that the performance drop on
the unseen test set is less significant. Furthermore, observing that the logistic regression model
is neither under nor overfit is an additional indicator that the modeling complexityIncreased

Modeling
Complexity

has increased
compared to the modeling task where magnetic information was included in the set of descriptors.
Still, the ensemblemodels outperform other examinedmodels. This also holds for the indirect extra
trees classification model, for which the test score outperforms every other test score in Table 3.8.
Hence, the confusion matrices of the XGBoost classification model and the indirect extra trees clas-
sification model obtained by predicting the test set data using each model are shown in Figure 3.13.
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Figure 3.13: Confusion matrix of the predictions on the test set acquired from the XGBoost (left) and
the indirect extra trees (right) classification models trained on the reduced set of features,
excluding such resulting from the ab initio computation step of the critical temperature 𝑇𝑐.

3 Results90



Examining Figure 3.13 it is obvious that the XGBoost classificationmodel displayed on the left,
while having the same amount of false negative classifications as the extra trees classification trained
on the entire feature set, the XGBoost classificationmodel suggests a larger number of false positives
on the test set. Surprisingly, the indirect classification Indirect

Classification
Outperforming
Other Models

model built on the extra trees regression
model trained on the reduced feature set, displayed on the right side of Figure 3.13 is outperforming
every other examined classificationmodel trained on the reduced feature set and even outperforms
the direct extra trees classification model’s test performance included on the right of Figure 3.12,
which was trained on the entire feature set available. The fact that the indirect classification model
outperforms the other classificationmodels is likely a coincidence rather than something that occurs
regularly. However, this concludes that alsowithout performing the ab initio calculations, amaterials
screening process would be possible and beneficial, as e.g. the indirect extra trees classification
model maintains the false negative 𝐹𝑛 Rate < 10 %

Even Without
DFT-originated
Features

classification rate of below 10 % even in the absence of the
DFT-originated features. This allows for large-scale and computationally very inexpensive materials
screening applications. This demonstrates the capabilities of ML models within materials science to
add value to the scientific community based on existing scientific data.

3.1.5 Explainable Artificial Intelligence

While obtaining accurate predictions and quantifying model performances is important for applica-
tion cases, the discussedmetrics do not allow for an insight onwhy an individual data point has been
predicted to a certain value or class. However, this insight can be acquired using XAI methods such
as SHAP values discussed in section 2.5.3. In the following, plots of SHAP values, which provide an
overview of the impact of individual features on the model’s predictions, are discussed. These de-
pictions are referred to as SHAP summary SHAP Summary

Plots
plots. While this discussion could be conducted for both

regression as well as classification tasks, the discussion in this section is restricted to selected regres-
sion models. However, the discussion of the SHAP values corresponding to the classificationmodels
would be analogous. In this section, the discussion is also restricted to the nine features with the
largest sum of impact magnitudes for each model due to the large feature space in both the entire
and the restricted feature set. To generate the SHAP values depictions, the model is passed to the
SHAP package’s [128] explainer routine, and the marginal feature contribution to the overall model
prediction, away from the base value (the average model prediction), is determined for data points
which were part of the training data set. In this case, using the entire training data set to generate
the feature-importance depictions was feasible. The SHAP values for each of the nine features Nine Most

Impactful
Features

with
the largest sum of impact magnitudes are shown for the extra trees regression model trained on
the entire feature set (as included in Table 3.4) are shown in Figure 3.14. For each SHAP summary
plot, a selection of features, which is indicated to be remarkably impactful to the model’s prediction
by the depiction of the features SHAP values, is depicted separately. This approach represents an
example of data-driven science and analysis.

FromFigure 3.14, it can be seen that all of the nine Eight of Nine
Most Impactful
Features Related
to Magnetism

most impactful features except for one (the
electronegativity of the atom at the inequivalent lattice site two which is denoted by 𝜒(2)) represent
magnetic properties of the compound. However, also the interplay of atomic electronegativities in
Heusler alloys is known to affect themagneticproperties of the compound [271, 272], which explains
the occurrence of an atomic electronegativity in the SHAP summary plot from Figure 3.14. Four of
the features displayed in the SHAP summary plot represent DFT-originated features, namely𝑀Abs,
|𝑚1|, 𝑀 , and 𝑚1. Apparently, the magnetism of the element in the first position in the molecular
formula ismore important to themodel’s prediction than themoments at the other positions. This is
expected for all L21 compounds, representing the majority in the data set, as this element occupies
half of the alloy’s structural lattice sites.
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Figure 3.14: SHAP values for the nine features with the largest accumulated magnitude of impact on the
prediction from the prediction base values of the extra trees regression model trained on
the full set of features. SHAP summary plots like this one relate feature values (color) to the
feature impact on the prediction (SHAP value). The layered coloring serves the purpose of
visualizing the number of data points in the region of SHAP values (width of color). The color
itself indicates the feature value relative to the mean feature value. This fFigure is adapted
from [231].

This impact on the model’s prediction emerging from this element appears in both the ab-
solute and the actual value of the magnetic moment, including the sign. Hence, for many of the
structures in the database, the magnetic moment arising from the element in the first position in
the molecular formula determines a large proportion of the overall magnetic moment. For all quan-
tities, except the density of ferromagnetic constituents, an increasing SHAP value of the feature
seems to correlate with an increasing feature value. However, this proportionality is less clearly dis-
played for the magnetic state, which is expected as the magnetic state descriptor is represented by
an integer encoding the magnetic state type and manifestation degree. The magnetic state consists
of digits ordered like e.g. FAS.Magnetic State

Interpretation
While each letter represents the manifestation degree of either

an FM (F), an AFM (A), or spin-spiral (S) state extracted from the JuHemd, the values of each digit
reach from 0 to 9. A state code of 000 hence represents a non-classifiable magnetic state according
to the JuHemd. Hence, it is clear that large numbers for the state encoding correlate to stable FM
states, which are beneficial to a larger critical temperature, which is indicated by the present red
area at the magnetic state feature on the right. From Figure 3.14, it is apparent that the sum of
absolute magnetic moments and the total moment within a compound are considered impactful to
the prediction outcome by the extra trees regression model. Hence, both quantities are shown in
Figure 3.15. Additionally, both the magnetic moment and the absolute magnetic moment of the
element on the first position in the molecular formula of the compound are shown in Figure 3.16.

From Figure 3.15, it can be seen that a decent amount of compounds exhibit relatively large
critical temperatures but,Strong AFM

Configurations
at the same time, a vanishing compound’s magnetic moment, however,

not a vanishing sum of absolute moments. This is an indication of strong AFM configurations.
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Figure 3.15: Depiction of the unsplit, but processed GGA compound’s total moments in comparison
to the theoretical, critical temperature of the compound (left) and the sum of absolute
magnetic moments of the compound compared to the corresponding critical temperature
(right). The marginal distributions, averages (dashed red line), and standard deviation in-
tervals (red colored area) are added for the reader’s convenience. Right figure is adapted
from [231].

However, when the sum of absolute moments is examined, it becomes clear that increasing
values𝑀Abs correlate with larger critical temperatures. More precisely, large critical temperatures
do not occur for compounds with small sums of absolute magnetic moments. At the same time, a
large𝑀Abs does not conclude that the corresponding compound has a high value of 𝑇𝑐. This caused
the lower right triangle shape Triangle Shapeconstituted by the data points on the right of Figure 3.15. This relation
can be expressed as in equation (3.3), using a constant 𝐶, and is an example of the mentioned non-
linearity of the task to model the critical temperature. [231] In this sense, the absolute magnetic
moment is acting as an upper boundary for the critical temperature.

𝑇𝑐 ≤ 𝐶𝑀Abs (3.3)

From Figure 3.16, it can be seen that a significant number of atomic magnetic moments at the first
molecular formula position are located close to zero or even exactly zero. However, examining the
depictions, it can be seen that there is no clear relation between this particular magnetic moment
and the critical temperature. While a larger moment generally correlates with a larger critical tem-
perature, the relation between both quantities follows no simple, e.g. linear relation. Beyond that,
the depictions in Figure 3.16 reveal properties of the magnetic moment, specific to the moment
of the first element X of the compound’s molecular formula, emerging from the processing of the
JuHemd. Considering the theoretical upper moment limit for 𝑑 magnetism is situated at 5 𝜇𝐵 and

Discussion of 𝑚1
and |𝑚1|

the upper limit for 𝑓 magnetism is located at 7 𝜇𝐵, the moments appear too large. However, it is
essential to keep inmind that for e.g. both theL21 and XA phase of the correspondingmagneticmo-
ment originating from the atom constituent X actually contain two lattice site’s magnetic moments.
A more extreme case represents the binary alloy Cr3Al with a theoretical GGA critical temperature
of 1216 K. In this case, the magnetic moment at the first molecular formula position is combined
out of six individual moments of this AFM alloy, as the AFM structure was computed using a larger
unit cell.
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Figure 3.16: Depiction of the unsplitted, but processed GGA magnetic moments emerging from the ele-
ment on the first position in the molecular formula in comparison to the theoretical, criti-
cal temperature of the compound (left) and the corresponding absolute magnetic moment
compared to the critical temperature (right) of the alloy. The marginal distributions, aver-
ages (dashed red line), and standard deviation intervals (red colored area) are added for the
reader’s convenience.

Despite that the magnetic moments are only determined per unique constituting element
and not per site and unique constituting element occupying the site, which would accumulate to a
significant number of descriptors when disordered compounds are considered, represents an over-
simplification of the site’s occupations, the ML models can relate this simplified quantity to the
critical temperature.

The SHAP values corresponding to a selection of the most impactful features on the gradi-
ent boosting model’s regression, which was trained without the DFT-originated descriptors, are dis-
played in Figure 3.17. From Figure 3.17 it can be seen that only two features are directly associated
with magnetic compounds, namely the fractional cobalt density and the fractional densityFractional

Densities
of FM

atoms (i.e. Fe, Co, and Ni) in the compound. From the SHAP summary plot, it can be told that
very large fractional densities of FM atoms within a compound strongly contribute to the gradient-
boosted trees regressionmodel, predicting a large critical temperature for that particular compound.
However, low and average values of the FM density seem to have a lowering impact on the critical
temperature prediction. In contrast to the FM density, the impact attributed to the cobalt density
is more clear, as very low amounts of cobalt (i.e. absence of cobalt) within a compound cause the
model to predict a reduced critical temperature, while larger values of the fractional cobalt den-
sity appear to have an increasing effect on the 𝑇𝑐 prediction. The individual densities of the FM
constituents and the combined FM density, in relation to the critical temperature, are depicted in
Figure 3.18. Both the cobalt and the FMdensity were also among the nine features that were shown
in the SHAP summary plot obtained by the model, which has been trained on all features, including
such based on ab initio results.
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Figure 3.17: SHAP values for the nine features with the largest accumulated magnitude of impact on the
prediction from the prediction base values of the gradient boosted trees regression model
trained on the reduced set of descriptors, excluding the DFT-originated magnetic features.

From Figure 3.17, it can be seen that the total (summation of atomic) electronegativity has
a significant impact on the model’s prediction. While this is not surprising, as already previously
discussed, the electronegativity Total

Electronegativity
is indeed related to the magnetic properties of a Heusler alloy; in-

terestingly, a large sum of total electronegativities appears to be related to lower predictions of the
critical temperature. However, it is important to mention that a sum of electronegativities indeed
does not represent a measurable physical quantity but implies properties of the individual alloy’s
constituents. Furthermore, it is observable that the total number of valence electrons within the
Heusler compound exhibits a significant impact on the model’s 𝑇𝑐 prediction. However, it is well-
known for Heusler alloys that the number of valence electrons is relevant to a plurality of material
properties, includingmagnetic phenomena. Total Number of

Valence
Electrons

[273, 274] The relation between the total number of va-
lence electrons and the critical temperature is shown in Figure 3.19. From the previous observations,
it is safe to say that in the case of themodel, whichwas trained under the exclusion of DFT-originated
features, other quantities, which are closely related to the DFT-originated magnetic properties ap-
peared in the SHAP summary plot as those features were excluded. Hence, these quantities seem
to provide themodel information, which themodel did not need to rely on when the DFT-originated
featureswere available. It is noteworthy that themodel successfully identifies a correlation between
some features and the critical temperature. For these features, this is consistent with the existing
physical understanding. While it is intuitively clear that the symmetry code and, hence, the structure
of the compound affects the magnetic properties, the interpretation of the symmetry code’s impact
in this plot is arbitrary, as the symmetry’s encoding here represents an integer which is assigned
to the compound, based on the order of occurrence of the compounds Interpretability of

the Symmetry
Group

corresponding symmetry
group in a list of symmetry groups uniquely occurring within JuHemd. Hence, the SHAP summary
plot shows no apparent relation to this particular feature. Unsurprisingly, the SHAP values indicate
that the atomic number of the first site 𝑍1 has an impact on the critical temperature’s prediction. It
seems that lower values for the first site’s atomic number might be beneficial to a higher magnetic
critical temperature.
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Inspecting Figure 3.4, it is clear that lower relative feature values for the atomic number on
site one correspond to atoms in the range of 3𝑑 transition metals, which are known to exhibit mag-
netic properties. Examining Figure 3.18, one can see that there are trends of proportionality be-
tween the critical temperature and the corresponding density visible for the iron density as well as
the FM density. However, neither for cobalt nor nickel this trend could be observed. The propor-
tionality is very clear for the FM density. This observation validates the order provided in the SHAP
summary plot in Figure 3.17. From this SHAP summary plot, it can also be seen that especially low
densities of cobalt are—on average—contributing to a prediction of a lower critical temperature,
which is in line with the relation of the cobalt density with the critical temperature due to the very
populated lower 𝑇𝑐 region in the depiction for low cobalt fractions.Cobalt Fractions

Figure 3.19: Relation between the total number of valence electrons of the compound to the critical tem-
perature on the whole GGA data set. The marginal distributions, averages (dashed red line),
and standard deviation intervals (red colored area) are added for the reader’s convenience.

While there is no simple trend visible in the depiction of the total number of valence electrons
of a compound in comparison to the corresponding critical temperature, the discretely clustered
data points seem first to increase and then lower in the average critical temperature for increasing
valence electron numbers. This average 𝑇𝑐 peaks at about 29Peaking at 29

Valence
Electrons

valence electrons within the com-
pound. It is understandable that a model considers this relation when concluding a prediction. The
fact that this relation is indeed non-linear is already visible from the corresponding SHAP value dis-
tribution shown in Figure 3.17.
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(a) Fractional density of FM atoms (b) Fractional density of cobalt

(c) Fractional density of nickel (d) Fractional density of iron

Figure 3.18: Relation between the compound’s fractional densities of FM (i.e. Fe, Ni, and Co) atoms,
cobalt, nickel, and iron to the critical temperature of thewhole GGA data set. The subfigures
(a), (b), and (c) are adapted from [231].
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3.2 Half-Metallicity in L21 and XA Heusler Alloys

Similar to the critical temperature, half-metallicity as a property ofHalf-Metallicity
as Magnetic

Phenomenon

magnetic materials is the result
of complex physical interactions and an interplay (like e.g. hybridization of orbitals) within themate-
rial related to e.g. elemental composition, electron configuration, and structural disorder. [75, 275]
Materials that are conducting in a spin state (by convention the spin-up state is denoted as ↑) but at
the same time do not conduct in the other spin state (spin-down is denoted ↓)—i.e. the materials
have a gap in the DOS of the minority spin—have applications in concepts of spintronics, in partic-
ular for spin-injection devices. [276] These concepts include e.g. the concept of magnetic random
access memory (MRAM), which— in contrast to semiconductor-based dynamic RAM—represents a
non-volatile memory technology,Magnetic

Random Access
Memory

which is already applied in special use cases. Due to the reduced
consumption of power, the further development of the MRAM technology—which allows an appli-
cation beyond the established areas—would be desirable to reduce the power consumption of IT
systems. [277]

In the particular case of the ordered Heusler alloys phases L21 and XA, the known Slater-
Pauling behavior is able to identify half-metallic compounds based on their elemental composition
and magnetic configuration. [75, 278] While the Slater-Pauling behavior is extremely helpful when
screening for half-metallic compounds, the relations formulated by [75] rely on the fact that the total
magnetic moment of a half-metallic alloy has an integer value. However, as ab initio calculations

Slater-Pauling
Behavior & Ab

Initio

include approximations, there is an errormargin for themagneticmoment present evenwhen using
the Slater-Pauling behavior for materials screening. This section demonstrates the application of
ML methods for predictive modeling in this particular materials screening application, including an
analysis of the predictions compared to the Slater-Pauling behavior and the use of the SHAP package
to explain the relations learned by the used model.

3.2.1 Data

The data used for training, validation, and testing, which contains spin-polarization fractions at the
Fermi energy for different L21 and XA Heusler compounds, was collected by collaborators from the
University of Alabama and published by the time of writing this thesis. [216] The fractions have

Ab Initio Data been determined using DOS computations obtained using the plane-wave pseudopotential code
QUANTUM ESPRESSO. [279–281]

Over time, two different iterations of the mentioned data were available for the presented
discussion. The number of individual data points per phase and both phases combined of the dif-
ferent data set versions are shown in Table 3.9. From Table 3.9, it can be seen that in both data
set iterations, the amount of data points is balanced for both L21 and XA phases. The polarization
fractions at the Fermi energy contained in the data set are depicted in Figure 3.20.

Data Version L21 Compounds XA Compounds Combined

1 98 98 196
2 179 165 344

Table 3.9: Overview of data set sizes per phase at both iterations of the data set.
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Figure 3.20: Distribution of the spin-polarization at the Fermi level within the data set. Each vertical bar
indicates a 10 % range starting from zero polarization on the left. The different colored bars
show the distribution for L21 and XA separately.

From Figure 3.20, it is evident that the lower spin-polarization fractions at the Fermi energy
are dominant within this data set. Using the presented data as a training database for a materials
screening application, which can be translated to anML classification task, which uses structural and
magnetic data to classify compounds for half-metallicity as an inherent property.

Structural Magnetic

Label† 𝑀*

Phase‡ 𝑚𝑋1
Lattice Constant 𝑚𝑋2

𝑚𝑌
† X2YZ, * 𝑀 = ∑

𝑖
𝑚𝑖

‡ L21 or XA

Table 3.10: Overview of features stored alongside the spin-polarization at the Fermi level within the
database.

Using the descriptors from Table 3.10, during this study, a set of features has been con-
structed, which is shown in Table 3.11. The descriptors constructed, using the features from Ta-
ble 3.10, accumulate to a total of 15 features. With this number, the training data is well within the
one-in-ten rule. Also, it is apparent from Table 3.10, Descriptor

Development
that the magnetic moment of the main group

element within the Heusler alloy was missing in the initial database. While the magnetic moments
consider the respective elements, the magnetic moment might not have a significant size or impact
on the model prediction. However, this should not be assumed beforehand and, therefore, was
examined in the XAI analysis and model evaluation process instead of simply omitting the feature
entirely. Hence, as𝑚𝑍 was not directly contained in the database, the value was determined using
the formula (3.4).

𝑚𝑍 = 𝑀 − 𝑚𝑋1
− 𝑚𝑋2

− 𝑚𝑌 (3.4)
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Structural Magnetic Electronic

𝑍𝑋 𝑚𝑋1
𝑒val

𝑋
𝑍𝑌 𝑚𝑋2

𝑒val
𝑌

𝑍𝑍 𝑚𝑌 𝑒val
𝑍

Phase† 𝑚𝑍 𝑒val
Tot

Lattice Constant 𝑀
𝑀Abs

‡

† One Hot Encoded (L21 = 1 & XA = 0)
‡ 𝑀Abs = ∑

𝑖
|𝑚𝑖|

Table 3.11: Overview of descriptors derived from those included in the data base.

Using the spin-polarized DOS 𝜌𝜎(𝐸) acquired using ab initio calculations, the spin-polarization frac-
tion at the Fermi energy 𝑃𝑆(𝐸𝐹 ) is determined using the expression from equation (3.5).

𝑃𝑆(𝐸𝐹 ) = 𝜌↑(𝐸𝐹 ) − 𝜌↓(𝐸𝐹 )
𝜌↑(𝐸𝐹 ) + 𝜌↓(𝐸𝐹 ) (3.5)

From Figure 3.21 it can be seen that only six different elements occupy the Z site in the L21 Heusler
structure within the training data. On the other hand, the X and Y structure sites are occupied by
various 3𝑑 and a few 4𝑑 and 5𝑑 (only on the X site) transitionmetals.Site-Specific

Elemental
Composition in
Training Data

Of course, since half-metallicity
represents a magnetic phenomenon, the strong involvement of 3𝑑 transition metals is expected.
This description also applies to the atomic number distribution of the lattice sites for the inverse
Heusler XA phase, as shown in Figure 3.22.

Figure 3.21: Atomic number distribution for the L21 phase structures within the training database, col-
ored to depict the occupation of different structural sites.
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However, when moving to the materials screening using compounds different from the train-
ing database, one should be aware that, the less similar a predicted compound is compared to com-
pounds from the training database, the more OOS Out-of-sample

Predictions
this particular prediction will be. It is clear that

in an ML-assisted materials screening application, some degree of OOS prediction is unavoidable to
discover newmaterials. Still, this should be kept in mind when judging a model’s predictions. A way
to quantify the individual OOS prediction degree would be to count the number of elements in the
screened compound, which are known from the training data at the corresponding sites. If all ele-
ments on the individual compound sites were in the training set at some point, then the prediction
would not be OOS. However, if the training data does not contain any elements of the compound at
these specific sites—however, possibly on other sites—the prediction would be called entirely OOS.
Generally, one would expect a higher predictive performance for screened compounds that are less
OOS.

Figure 3.22: Atomic number distribution for the XA Heusler phase structures within the training
database, colored to depict the occupation of different structural sites.
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3.2.2 Modeling Goal

It has already been clarified that this particular study aims to screen materials ab initio data of or-
dered full and inverse Heusler alloys for half-metallic properties. However, to approach this task
using ML modeling, the problem must be translated into a classification task. Given the value of
𝑃𝑆(𝐸𝐹 ) is continuous, it is necessary to define a threshold that separates the compounds from the
training database into “high” grade spin-polarized and “low” grade spin-polarized. When defining
this particular threshold, a fewClassification

Classes
factors have to be considered:

• As seen in Figure 3.21 and Figure 3.22, the higher spin-polarization range is less represented
in the data set, whichmight lead to larger error margins when predicting highly spin-polarized
compounds

• At the same time, setting a threshold too highwould also cause the training database to shrink
in this particular polarization region

• A false negative error has to be weighted worse than a false positive, as missing a compound
prevents further scientific examination, while a posterior validation using ab initio calculations
of a false positive is able to rule out false positives easily

Considering the previously mentioned arguments, the interval for low-grade spin-polarization at the
Fermi level was set to be [0, 0.6) while the complementClassification

Threshold Choice
high-grade interval was set to be [0.6, 1].

While a spin-polarization fraction of 60 % at the Fermi level is quite far from actual half-metallic
behavior, this ensures that fewer compounds get overlooked in the screening application and the
training base for the higher region—within the larger data set size—still represents about 34 % of
the training data. For the same reasons the threshold has been chosen, it was decided that the
recall would be used to select and tune an appropriate model alongside a 4-fold CV procedure and
20 % of the original data set size as test data. After selection, tuning, and evaluation, the model
is retrained on the entire available data to improve the data variety and size the model has been
trained on before applying it to screen for (near) half-metallic alloys. Before the data splitting, the
data has been randomized to avoid clustering. Also, a scaling, as shown in equation (3.2), has been
performed for the data, which has been used for model training and evaluation but has also been
applied to the screening data.

As mentioned, half-metallicity in Heusler L21 and XA phases can, in principle, be determined
using the known Slater-Pauling behavior. This behavior implied that a half-metallic alloy would lie
on either of the lines represented by equation (3.6). [75, 278] There exist similar rules for other
materials classes such as the Heusler phases C1b and Y. [282]

𝑀L21
= 𝑒val

Tot − 24 𝑀XA =
⎧{{
⎨{{⎩

𝑒val
Tot − 28

𝑒val
Tot − 24

𝑒val
Tot − 18

(3.6)

The physicalPhysical Intuition
Behing

Slater-Pauling
Behavior

reasoning behind these lines is that the total number of valence electrons within the
compound is indeed an integer value. However, if also the total magnetic moment 𝑀 is an in-
teger value, both majority and minority band numbers must therefore be integers. This fact can
be related to 𝑑 orbital hybridization between the transition metal constituents hence—in the L21
phase—forming a total of 12 ↓ states below the Fermi level, which results in the rule for the L21
phase in equation (3.6). A similar reasoning holds for the XA phase but is well documented in the
literature. [282]
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It could be argued that if the Slater-Pauling behavior is known, using different materials
screening approaches is unnecessary as one could apply the rules deducted from equation (3.6).
However, there is no guarantee that the reasoning behind the Slater-Pauling behavior is the ex-
clusive origin of half-metallicity in Heusler alloys. In fact, there are examples known, such as L21
Mn2CuGe, which violate this rule with an integer total magnetic moment as it has 29 valence elec-
trons while exhibiting half-metallicity at the same time. [283]

The computation result ofmagneticmoments by ab initiomethods can be impacted by the ap-
plied DFTmethod, chosen XC functionals, and used convergence parameters. Necessity for

Screening
Methods Beyond
Slater-Pauling
Curve

For some compounds,
these computational differences can lead to a deviation of the total magnetic moment from a value
that would otherwise be an integer value. Hence, this particular compound would be missed by
simply applying the relation from equation (3.6). Also, the presence of spin-orbit interaction affects
the spin-polarization of the DOS and, subsequently, the half-metallicity of a compound. [284] Com-
bining these reasons, it is clear that other methods besides the Slater-Pauling behavior are needed
to effectively screen Heusler compounds data, computed with ab initio methods, to discover half-
metallic materials and complement existing methods. In Figure 3.23, the lines from equation (3.6)
as well as the screened L21 and XA Heusler ab initio data obtained from the Materials Project [94]
database are shown. For this depiction, a deviation of the total magnetic moment of 0.05 𝜇𝐵 from
an integer value is in line with margins chosen by other works as e.g. by [75].

Figure 3.23: Depiction of Slater-Pauling behavior on the screened data from the Materials Project. [94]
The markers meeting the criterion (red lines) from equation (3.6) are highlighted in green.
The marginal distributions on top of the depictions show the distribution of the compounds
meeting the Slater-Pauling behavior.

What cannot be seen directly from 27 Compounds
in Screening
Data Fulfilling
Slater-Pauling
Behavior

the scatter plots in Figure 3.23, but from the marginal
distribution on top of the visualizations, is that 24 L21 and three XA compounds are situated exactly
on the green cross markers, indicating that those compounds meet the relation from equation (3.6)
and hence will display half-metallic properties.
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At the beginning of this study, a selection of models very similar to those examined in section
3.1 have been tested on the training database, and from this selection of models, the XGBoost [125]
model has been chosen as the best fit for this particular classification problem. The hyperparameter
optimization was performed using a grid search algorithm and was later replaced by a BO hyperpa-
rameter search algorithm. [285]Model Choice

and
Hyperparameter

Optimization

Furthermore, in the last model iteration, which has been used for
the XAI-based analysis of themodel’s predictions, the 4-fold CV process has been replaced by a strat-
ified 4-fold CV approach in which the balance of classes is maintained within each validation set. It
is known that stratified CV procedures can lead to improvedmodel performances when imbalanced
data is used for ML model training. [286, 287]

The following section outlines the workflow for the screening process, including details on
how the screening data was obtained from the Materials Project [94] database, processed, filtered,
and screened.

3.2.3 Screening Workflow

After the model selection and training—of the selected model—on the data, which was subse-
quently published in [216], the materials screening workflow first required the obtainment of suit-
able data, which in this case is ab initiomagnetic and structure data from the Materials Project [94],
for the screening itself. The Heusler phase L21 belongs to the space group Fm3m, while the XA
phase belongs to the space group F43m. It is possible to filter the database for space groups using
the Materials Project API. However, not all compounds listed in theScreening Data

Filtering
database under these particular

space groups fulfill the definition of Heusler alloys discussed in section 3.1.1. Besides compounds
that do not fall into the typical definition of a Heusler alloy, there are also compounds contained
in the database, which simultaneously are part of the training database. While the main goal of
this study is the examination of half-metallicity in full and inverse Heusler alloys, on the side also
transition metal Heusler type alloys, which were predicted by multiple model versions used in this
study to have a highly spin-polarized DOS at the Fermi energy, have been examined, for which a
brief discussion is included in a later section. An overview of the data set sizes, regarding the space
groups initially as well as after the removal of both, compounds that appear in the training database
and compounds which do not fall into the classical definition of Heusler alloys as by section 3.1.1 is
given by Table 3.12.

Processing Stage Set Size for
Space Group Fm3m

Set Size for
Space Group F43m

Full Space
Group Size 4394 200

Removed Training
Compounds 4375 196

Applied Criteria for
Heusler Composition 428 54

Table 3.12: Overview of screening data set sizes obtained from the Materials Project [94] before any
removal of structures, after removal of structures which appeared in the training database,
and after removing structures which do not fulfill the typical definition of Heusler alloys.
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From the obtained structural data, the compilation of a screening database is straightforward.
The data obtained from theMaterials Project [94] includes the individual atomicmagneticmoments,
the atom types on the different sites, the volume of the cubic unit cell, and the corresponding space
group. Descriptor

Determination
from Screened
Data

From these quantities, it is possible to construct the descriptors shown in Table 3.11, which
were used to train the model. In principle, the Materials Project [94] database also contains DOS
information for many compounds. However, together with collaborators from the University of Al-
abama [281], it was determined that the DOS data from this database is insufficient to screen for
half-metallic compounds as e.g. Fe2CrSi has a DOS [288, 289] which resolves both spin states, dis-
playing metallic characteristics, in the database but is known to be half-metallic by e.g. [290]. This
example also serves as a reminder to consider the quality of the examined data, as also discussed
in section 2.1.2. While the data included in the Materials Project database [94] is computed mainly
using the PW-based code VASP [291], it should be kept in mind that the computations available
there are performed in a high-throughput fashion, which concludes the necessity to question if the
data quality provided in such databases is sufficient for the intended use case. Quality of DOS,

Magnetic, and
Structure Data

In this case, it was
concluded that the DOS data is not sufficient for the intended screening application. However, com-
puting a high-quality DOS is a much more challenging endeavor than performing an SCF ab initio
calculation and thereby computing the magnetic moments based on ICSD [292] structures. There-
fore, the chosen modeling approach is appropriate in this case because the magnetic data from the
training database was also computed using a PW-based method.

An overview of the screened compounds regarding the atomic numbers occupying each struc-
tural site is shown in Figure 3.24 for the L21 Heusler phase and in Figure 3.25 for the XA inverse
Heusler phase.

Figure 3.24: Atomic number distribution for the L21 phase structures in the screened structure’s
database obtained from the Materials Project [94], colored to depict the elemental occu-
pation of different structural sites.

From Figure 3.24, Site-Specific
Elements in
Screened Data

it can be seen that the 4𝑑 and 5𝑑 region for the X and Y sites are much
more populated than in the training set distribution from Figure 3.21. Also, compared to the training
database, there are not five different elements occupying the Z site but rather 13 different elements.
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The immediate consequence of both of these observations is that there will be a decent amount of
predictions that this screening data will be OOS to some degree. However, as can be seen in Fig-
ure 3.25, this is not the case to this extent for the XA inverse Heusler phase, which can be attributed
to the comparably lower number of structures available from the screened database for this phase.

Figure 3.25: Atomic number distribution for the XA inverse Heusler phase structures in the screened
structure’s database obtained from the Materials Project [94], colored to depict the ele-
mental occupation of different structural sites.

The code written and used during this study for interfacing with the Materials Project API,
data processing, model training, model evaluation, prediction, and structuredCode Publication processing/filtering
of the predictions has been published. [293]

3.2.4 Model Predictions

In the following, the predictions of the differentmodel iterations and their differences are presented.
Subsequently, using the last trained model, an analysis of the model’s predictions on the test set
data is outlined. This assists in understanding which features were relevant to the model for the
classification of each individual compound.

Prediction Analysis

The data set, provided and collected by collaborators [281], was extended during the course of this
study. Even before the data set was published [216], exploratory data analysis, experimentation
with different models, and predictions were performed. This led to multiple model iterations and
multiple batches of predictions based on the screening data set. At the beginning of this study, it
was experimented with a three-class approach, separating the compounds in classes of vanishing
𝑃𝑆, 0 < 𝑃𝑆 < 0.6, and 𝑃𝑆 ≥ 0.6.
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Choice of Binary
ClassificationWhile this approach gives more distinct insights into the degree of DOS polarization at the

Fermi level, this approach was both harder to interpret using XAI methods and had decreased test
performance compared to a two-class model when it comes to finding compounds with high DOS
spin-polarization at the Fermi level in a screening application. Hence, the three-class approach was
swapped for a binary classification task. An overview of the different model iterations and what is
distinct to them compared to the previous XGBoost model is given in Table 3.13.

Model
Iteration Difference to Previous Version Test

Recall
Test
Accuracy

Test
Size

Class Size
𝑃𝑆 ≥ 60 %

1 Initial Model Trained on 196 Data Points 50 % 75 % 40 12

2 Extended Training Data Base to 344 Data Points
Included𝑀Abs as a Feature

60 % 86 % 69 15

3 Added Numbers of Valence Electrons as Features
Used BO for Hyperparameter Optimization 66 % 86 % 69 15

4 Included𝑚𝑧 as a Feature
Moved to stratified 4-fold CV 57 % 83 % 69 14

Table 3.13: Overview of different model iterations which were used during this study and the character-
istics which differ compared to the previous iteration. All score values have been rounded to
the second decimal point.

The 4th model iteration introduced in Table 3.13 was exclusively used for the XAI analysis
of the relation the model has learned. Of course, in principle, the predictive process could have
been repeated with arbitrary many versions of (potentially improved) models. However, the infor-
mation gain per predictive iteration would be minimal at some point due to the cumulative number
of predictions already made in the previous model iterations. This was also the case here, which
is why this last model iteration was only included in this thesis for the XAI discussion. However,
while it is intuitive that a weakly magnetic element at the Z site is contributing little to the overall
half-metallicity of the compound, it would introduce an omitted variable bias not to include this
magnetic compound property based on this intuition, which is why it was in the feature importance
analysis. As𝑚𝑍 was not included initially in the training data, this particular feature was not added
earlier. Model Iterations

Development
While the test performance is comparable across all models, the 4th model represents the

least biasedmodel regarding the human-made decision onwhich features to include. The lastmodel
iteration and the previous data splitting were initialized using a fixed random seed—for increased
reproducibility—hence, the test set’s size and performance changed slightly compared to the other
models.

The following presents the predictions of the differentmodel iterations on the screening data
set. For each prediction of a compoundwith high spin-polarization of the DOS at the Fermi energy, a
literature search has been conducted. The subsequently collected results of this search are included
in the Tables 3.14, 3.15, and 3.16. They are accompanied by an indication of which model iterations
predicted this particular compound to have 𝑃𝑆 ≥ 60 % and the degree to which this particular
prediction is OOS. If the table entry related to the literature search is labeled with “No Source” Literature Searchthis
means that at the time of writing this thesis, no literature stating ab initio-based conclusions about
the half-metallicity of this particular compound has been found during the search. The OOS column
in each table quantifies how many elements within the individual compound are occurring on the
specific sites in the training data.
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“No” in this sense means that all elements were occurring in the training data at the correspond-
ing sites. “Slightly” means all elements but a single element were occurring in the training data at
the corresponding sites. “Considerably” means that only a single element of the compound was
known at that particular site. “Entirely”OOS Convention means that not a single element in the given compound
was included in the training set at the specific sites.

Whenever published ab initio results were found that characterize the compound as half-
metallic, nearly half-metallic, or the particular compound was reported with an explicit value for
𝑃𝑆, which is situated above the classification threshold, the compound was not examined further.
If sources were found, the type of ab initio methods used in the found source is also included in
the tables. However, if sources suggested other conductivity properties or no sources were found
in a literature search, then a FLAPW electronic structure calculation was performed to decide if the
model’s predictions were correct. This FLAPW validation will be discussed after the predictions of
the individual model iterations are presented.

Also, suppose a compoundwas found to be half-metallic by the Slater-Pauling behavior shown
in Figure 3.23. In that case, an “SP” in the literature columns indicates this in the tables. Of course, an
unknown number of false negatives are involved with the prediction of highly spin-polarized DOS at
the Fermi level. However, validating all the predictions—including the predicted low spin-polarized
compounds is not feasible with the number of structures given. This is partly due to the computing
time requirements associated with the electronic structure calculations. The predictions for the 1st

model iteration are shown in Table 3.14. Compounds are ordered alphabetically in the following
tables. EachTable Order and

Structure
table includes the compounds first predicted to have a highly spin-polarized DOS at the

Fermi energy by the corresponding model iteration. Besides that, the information whether a later
model also predicted the model to be at the higher range of 𝑃𝑆 is included in an additional column;
this way, multiple appearances of compounds are avoided.

Compound Symmetry Literature Conductivity Model Version OOS

Co2FeIn L21 HM by FLAPW [294] 1 & 2 Slightly
Co2HfIn L21 No Source 1 Considerably
Co2MnSi L21 HM by FLAPW [295] 1 & 2 & 3 Slightly
Mn2CoGe XA HM by FLAPW [296] and SP 1 & 2 & 3 No
Mn2CuGe XA No Source 1& 3 Slightly
Mn2RuSi XA HM by PW [297] 1 & 3 Slightly
Rh2FeSn L21 No Source 1 & 3 Slightly
Ru2FeGe L21 Metallic but Polarized [298] 1 & 2 & 3 Slightly
Ru2FeSi L21 No Source 1 & 2 Slightly
Ti2MnSn XA HM by PW-PAW [299] 1 & 2 & 3 Slightly

Table 3.14: Predictions of the 1st model iteration. Green cells mark for which compounds, either the
literature search or the Slater-Pauling behavior, validated the model’s prediction of a DOS
spin-polarization at the Fermi level of at least 60 %. Grey cells are validated later using a
FLAPW electronic structure calculation. PAW is short for projector augmented wave method.
HM in this table and the following tables is short for half-metallic.

From Table 3.14, it can be seen that at least half of the compounds, for which the 1st model
predicted a highly spin-polarized DOS around the Fermi level, are actually half-metallic. The predic-
tions of the 2nd model iteration, which did not already appear in Table 3.14 are shown in Table 3.15.
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Compound Symmetry Literature Conductivity Model Version OOS

Co2CrSb L21 HM by PW [300] 2 & 3 Considerably
Co2HfAl L21 HM by FLAPW [301] 2 & 3 Slightly
Co2HfGa L21 HM by FLAPW [301] 2 Slightly
Co2MnSb L21 HM by FLAPW [302] 2 & 3 Slightly
Co2ScGe L21 𝑃𝑆 = 60 % by FLAPW + U [303] 2 No
Co2ZrGa L21 Nearly HM by FLAPW [304] 2 No
Fe2CrSb L21 HM by FLAPW [305] and SP 2 & 3 Considerably
Fe2MnP L21 HM by FLAPW [306] and SP 2 & 3 Slightly
Fe2TaGe L21 HM by FLAPW [307] 2 Slightly
Fe2TiAs L21 HM by PW [308] 2 Slightly
Fe2TiGa L21 Nearly HM by PW [308] 2 & 3 No
Fe2TiIn L21 Nearly HM by PW [308] 2 & 3 Slightly
Fe2TiSb L21 HM by PW [308] 2 Slightly
Ir2FeGa L21 No Source 2 Slightly
Ir2TcTl L21 No Source 2 Entirely
Mn2CoSb XA HM by FLAPW [299] and SP 2 & 3 Slightly
Mn2TaGe L21 No Source 2 & 3 Slightly
Mn2VGe L21 HM by ASW [309] 2 No
Mn2WAl L21 No Source 2 & 3 Slightly
Mn2WGa L21 HM by DFT [278] 2 Slightly
Ni2MnSn L21 Metallic by FLAPW [304] 3 No
Rh2FeGa L21 𝑃𝑆 = 79 % by PW-PAW [310] 2 Slightly
Rh2FeIn L21 Nearly HM by PW-PAW [310] 2 Considerably
Rh2MnSi L21 No Source, known by SP 2 Slightly
Rh2MnSn L21 No Source, known by SP 2 & 3 Considerably
Ti2CoAl XA HM by PW [311] 2 & 3 No
Ti2CoGa XA HM by FLAPW [312] 2 & 3 No
Ti2CoGe XA HM by PW-PAW [299] 2 & 3 No
Ti2CoIn XA HM by FPLO [313] 2 & 3 Slightly
Ti2CoSi XA HM by FLAPW [314] 2 & 3 No
Ti2CuAl XA Nearly HM by FPLO [315] 2 No
Ti2FeGa XA HM by FLAPW [299] 2 & 3 No
Ti2NiAl XA HM by FLAPW [299] 2 No
Ti2NiGa XA HM by FLAPW [299] 2 No
Ti2NiIn XA HM by FPLO[313] 2 Slightly
Ti2ZnAl XA No Source 2 Slightly

Table 3.15: Predictions of the 2nd model iteration, which did not occur in the previous model’s predic-
tions. Green cells mark for which compounds, either the literature search or the Slater-
Pauling behavior, validated the model’s prediction of a DOS spin-polarization at the Fermi
level of at least 6.0 %. Grey cells are validated later using a FLAPW electronic structure cal-
culation. ASW is short for the Augmented Spherical Wave method. FPLO is short for the
full-potential local-orbital method.
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From Table 3.15, it can be seen that 30 compounds are already known to exhibit half-metallic
behavior, while for five compounds, no sources were found at the time of writing. For only one
compound, it was found that it exhibits metallic properties, which will be investigated using the
FLAPW method later. The predictions of compounds with highly spin-polarized DOS at the Fermi
level, which first appeared in the 3rd model iteration, are shown in Table 3.16.

Compound Symmetry Literature Conductivity OOS

Co2CrGa L21 HM by LMTO [316] Slightly
Co2CrSi L21 HM by PW [317] and SP Slightly
Co2HfSn L21 HM by FLAPW [318] Slightly
Co2NbSn L21 Metallic by PW-PAW [304] No
Co2ScSn L21 No Source Slightly
Fe2CoGa L21 HM by LCAO [319] No
Fe2CoGe L21 Metallic by PW [320] No
Fe2CoSi L21 HM by FLAPW [296] No
Fe2CrGa L21 HM by PW [321] Slightly
Fe2CrSi L21 HM by FLAPW [290] Slightly
Fe2MnSi L21 HM by PW-PAW [322] No
Mn2CuSb XA No Source Slightly
Ti2CoIn L21 HM by FPLO [323] Slightly
Ti2CoIr L21 No Source Slightly

Table 3.16: Predictions of the 3rd model iteration, which did not occur in previous model predictions.
Green cells mark for which compounds, either the literature search or the Slater-Pauling
behavior, validated the model’s prediction of a DOS spin-polarization at the Fermi level of
at least 60 %. Grey cells are validated later using a FLAPW electronic structure calculation.
LMTO is short for the linear muffin-tin orbital method. LCAO is short for the linear combina-
tion of atomic orbitals method.

From Table 3.16, it can be derived that nine compounds were correctly predicted to be highly
spin-polarized by comparison with published work. For three compounds, sources are lacking, and
those will be examined deeper together with the remaining two compounds, which are reported by
sources to have metallic properties.

𝑃𝑆 Computation
for Previously
Gray Marked
Compounds

Combining the compounds associated with the cells for which the literature columns have
beenmarked gray leads to the selection of compounds collected in Table 3.17. For these compounds,
either no sources have been found at the timeofwriting, or theywere reported as not having at least
a 60 % spin-polarized DOS at the Fermi energy. Subsequently, the corresponding DOS polarizations
at the Fermi level were computed using the FLAPW method-based code FLEUR.

The values of 𝑃𝑆 have been computed using the DOS values corresponding to the energy
value on or the first value above the Fermi energy itself. This choice is necessary as the Fermi energy
is not always an element of the computed discrete energy scale. From the DOS, computed using
FLEUR1 the spin-polarization at the Fermi level has been calculated using equation (3.5).

1 The computations presented in this section of the results were performed using the FLEUR git commit hash
e9d2b5ad19c1e89fe0f6b820b76700cd18663cf9 compiled and executed on the supercomputer JURECA-DC.
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All of the presented validation calculations have been published within a separate AiiDA
database in [324]. All the calculation and convergence parameters used to compute the DOS data
necessary to compile the following results have been left as the FLEUR suggested defaults. How-
ever, it was chosen that the SCF calculation is performed on a grid of 30 × 30 × 30 k-points k-points Gird and

FLEUR
Convergence
Parameters

and the
DOS would be determined on a grid of 50 × 50 × 50 k-points using the GGA-based Perdew–Burke–
Ernzerhof (PBE) [325] XC functional. The Gaussian smearing used to calculate the DOS, which was
subsequently used to compute 𝑃𝑆, was set to 𝜎 = 0.005

3 Ha. For all the presented calculations, spin-
orbit interaction has been considered within the FLAPW calculation. Due to the consideration of
spin-orbit interaction, no perfect half-metalwill appear during the computation—with perfect 100 %
spin-polarization of the DOS at the Fermi energy. This is because spin-orbit interaction causes the
spin not to be a good quantum number [326] anymore. Therefore, spin-orbit interaction will cause
states to be induced within the half-metallic gap as a result of states above and below the gap being
coupled. This results in a lowered spin polarization—at the Fermi level—compared to a calculation
that neglects this particular interaction. [89] Beyond that, the smearing discretization can introduce
an additional error regarding the computation of the spin-polarization of the DOS at the Fermi level.
Hence, in the following discussion, which included the FLAPW validation results, if 𝑃𝑆 ≥ 75 % the
corresponding compound is referred to as nearly half-metallic, while for 𝑃𝑆 ≥ 90 % the compound
is exhibiting factual half-metallic properties and is hence referred to as half-metal.

From Table 3.17 it can be seen that three regular L21 Heusler compounds (Co2HfIn, Co2ScSn,
and Mn2TaGe) have been found to be nearly half-metallic in ab initio (FLAPW) simulations, which
was—after no literature regarding the near half-metallicity of these compounds has been found at
the time of writing—prior unknown. Nearly HM

Compounds
Without
Literature
Sources Found

Furthermore, the transition metal alloys Co2VZn and Co2NbZn
display practically half-metal behavior. The correct prediction of the factual half-metallic transition
metal elements is remarkable, as the data set did not contain Heusler alloys entirely composed of 3𝑑
transition metal elements. Therefore, this successful prediction represents a clear OOS prediction.
The corresponding DOS is shown in the following as Co2VZn represents the compoundwith themost
significant FLAPW-validated DOS spin-polarization at the Fermi level. This depicted DOS serves as
an exemplary successfully predicted factual half—metal, using the presented ML-based materials
screening approach. All other compounds from Table 3.17 do not fulfill either the set criterion to
classify as true positive classification, near half-metallic or even half-metallic, even though, with
56 % DOS spin-polarization at the Fermi level, four compounds are close to the set classification
threshold of 60 %.

The not converging FLAPW calculation in the case of Mn2WAl has been investigated. The
reason the DFT calculation did not finish is likely due to a faulty input structure. Using the FLEUR
input generator, the individual atoms got muffin-tin Failed Mn2WAl

Computation
radii assigned by geometrical consideration us-

ing the unit cell. Here, the Mn muffin-tin sphere turns out to be far too large compared to the W
sphere, which leads to the conclusion that the entire structural setup is probably corrupted due to
an incorrect input structure.

Summarizing the results, it is easy to see that from the predictions highlighted in the previous
tables, 49materials were correctly predicted to have spin-polarization of the DOS at the Fermi level
of above 60 %, many of which are half-metallic, by which half-metallicity was known for 7 materi-
als by applying the Slater-Pauling behavior alone. For 12 Summary of

Prediction
Precision

compounds, it could be determined that
they were predicted to have spin-polarized DOS to the same degree but were, in fact, false positive
predictions. This corresponds to a precision of approximately 80 %, not considering the case of
Mn2WAl.
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Compound Symmetry Prediction
Class

FLAPW
Validation
Spin Pol. 𝑃𝑆

Hit/Miss (Color)
Novelty of nearly HM

Model
Version

Classical Heusler Alloys

Co2HfIn L21 𝑃𝑆 ≥ 60 % 83 % Yes 1
Co2NbSn L21 𝑃𝑆 ≥ 60 % 19 % No 3
Co2ScSn L21 𝑃𝑆 ≥ 60 % 76 % Yes 3
Fe2CoGe L21 𝑃𝑆 ≥ 60 % 43 % No 3
Ir2FeGa L21 𝑃𝑆 ≥ 60 % 56 % No 2
Ir2TcTl L21 𝑃𝑆 ≥ 60 % 0 % No 2
Mn2CuGe XA 𝑃𝑆 ≥ 60 % 38 % No 3
Mn2CuSb XA 𝑃𝑆 ≥ 60 % 29 % No 3
Mn2TaGe L21 𝑃𝑆 ≥ 60 % 83 % Yes 2 & 3
Mn2WAl L21 𝑃𝑆 ≥ 60 % DNF 2 & 3
Ni2MnSn L21 𝑃𝑆 ≥ 60 % 10 % No 1
Rh2FeSn L21 𝑃𝑆 ≥ 60 % 36 % No 1
Ru2FeGe L21 𝑃𝑆 ≥ 60 % 58 % No 1 & 2 & 3
Ru2FeSi L21 𝑃𝑆 ≥ 60 % 56 % No 2
Ti2CoIr L21 𝑃𝑆 ≥ 60 % 56 % No 3
Ti2ZnAl XA 𝑃𝑆 ≥ 60 % 0 % No 3

Transition Metal Heusler Alloys

Co2NbZn L21 𝑃𝑆 ≥ 60 % 89 % Known HM by PW [12] 2 & 3
Co2VZn L21 𝑃𝑆 ≥ 60 % 93 % Known HM by PW [12] 2 & 3

Table 3.17: Combined predictions of the different model iterations for 𝑃𝑆 ≥ 60 % compounds from the
Tables 3.14, 3.15, and 3.16. Also including two transition metal Heusler-like alloys predicted
to have a highly spin-polarized DOS at the Fermi energy by multiple models. However, those
are, in principle, OOS predictions. DNF is short for the circumstance that the FLAPW calcula-
tion did not finish for some reason. Hence, as sources for Mn2WAl were not available at the
time of writing, no decision can be made whether the prediction was right or wrong.

In the following, the DOS of the factual half-metallic 3𝑑 transition metal L21 alloy Co2VZn
is shown in Figure 3.26. To generate this particular DOS depiction, the smearing was decreased to
𝜎 = 10−9 Ha.

Even though L21 Co2VZn does not achieve a perfect half-metallic 𝑃𝑆 value of 1, it is evident
that this compound practically represents a half-metal in the presented FLAPW examination, de-
spite being predicted to be metallic by other sources. Additionally, in the experiment, additional
effects can cause a material not to represent a perfect half-metal, even if simulations suggest this
particular property. Such effects include e.g. phonon scattering effects, potential fluctuations, and
temperature effects, which cause states to shift into the minority spin gap of the DOS.Co2VZn and

Slater-Pauling
Behavior

As seen in
the caption of Figure 3.26, Co2VZn displays a total magnetic moment of 1.07 𝜇𝐵 which is situated
above the integer value of 1 𝜇𝐵.
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Hence, the magnetic moment deviates from an integer value slightly above the additional
error margin of 0.05 𝜇𝐵. As mentioned earlier, the margin was introduced when the data set was
screened for compounds exhibiting Slater-Pauling behavior. This observation highlights the impor-
tance of complementary methods in materials screening processes and applications. The very small
DOS in theminority spin channel at the Fermi level visible in Figure 3.26 just below𝐸𝐹 might appear
a bit larger in the experiment due to effects such as e.g. phonon scattering or thermal excitation.

Figure 3.26: Spin resolved DOS of L21 Co2VZn, generated using the FLAPW code FLEUR. The total DOS,
the interstitial DOS, and the projected atomic DOS contributions are shown. The structure
on which this DOS computation is based was obtained from [327], where the compound
is described as a metallic ferrimagnet with a total magnetic moment of 1.07 𝜇𝐵. The very
small DOS in the minority spin channel is clearly visible at the Fermi level.

Explainable Artificial Intelligence Analysis

After discussing the predictions of the different model iterations, understanding the impacting fea-
tures behind the model’s predictions is the next logical step. An overview of all features used in the
training of the 4thmodel iteration and their corresponding impacts on themodel’s prediction on the
training database is given by the SHAP summary plot in Figure 3.27.
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Figure 3.27: SHAP summary plot including all features used to train the 4th model iteration in descend-
ing order concerning the largest accumulated magnitude of impact on the prediction per
feature. Each impact for every feature on a single prediction of the training data is shown.
Negative SHAP values indicate that the feature’s impact contributes to a predicted “low”
DOS spin-polarization at the Fermi level. In contrast, positive SHAP values indicate a feature
impact towards predicting a “high” 𝑃𝑆. Compared to the summary plot from Figure 3.14,
the individual points have not been smoothened to a distribution-like depiction.
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From Figure 3.27, it can be seen that a couple of features have a comparable impact magni-
tude. More precise, it appears that, besides the most impactful feature, which is the sum of abso-
lute magnetic moments𝑀Abs, the features can be grouped by impact magnitude into the following
groups, in decreasing order: Grouping by

Impact
Magnitude1. 𝑚𝑋1

and the lattice constant 𝑎Lat

2. 𝑒val
𝑋 ,𝑀 ,𝑚𝑌 ,𝑚𝑍 and 𝑒val

Tot

3. 𝑍𝑋, 𝑍𝑍 , Phase,𝑚𝑋2
and 𝑒val

𝑌

4. 𝑒val
𝑍 and 𝑍𝑌

The features within these subgroups represent a mix of magnetic, structural, and elemental compo-
sition-specific properties. While the magnetic descriptors appear as the most impactful, it cannot
be concluded that either one of the other feature types is less significant. Comparing

Descriptor Types
However, an observation

from the development, as this project progressed, is that the atomic numbers went lower in the
order of the SHAP summary plots, as the valence electron numbers were introduced to the model,
compared to earlier model iterations. Of course, a specific atomic number corresponds to a single
number of valence electrons. However, this relation is not fulfilled the other way around. Hence,
the information gain, which the atomic numbers provided to the model to constitute the overall
prediction, seems to be decreased compared to the previous versions. This could conclude that the
half-metallicity classification depends more on the number of valence electrons associated with an
atom at a given site than the exact element situated at this given site. This observation would be in
line with the known Slater-Pauling behavior. Non-Magnetic

Materials in
Summary Plot

It is no surprise to see from Figure 3.27 that low values
of the sum of absolute magnetic moments have an impact that drives the prediction towards the
“low” spin-polarization class. Of course, the lowest number this feature can take is 0.

As half-metallicity is an inherently magnetic phenomenon, it is intuitively clear that the van-
ishing sum of absolute magnetic moments constitutes the absence of half-metallicity. A similar rea-
soning can be applied to the SHAP values distribution for the magnetic moment𝑚𝑋1

. Of course, X
being a representative of the transition metal group, a low𝑚𝑋1

can be associated with a weak mag-
netism in the whole compound. However, the observation that 𝑚𝑋2

has a significantly decreased
impact on themodel’s prediction, compared to the impact of themagneticmoment𝑚𝑋1

, can be ex-
plained by a convention present in the training database—and hence also enforced in the screening
data set—which defines the axis of the magnetic moment 𝑚𝑋1

as the reference axis. However, it
is worth mentioning that the relation between feature value and SHAP value is inverted for𝑚𝑋2

as
can be seen in Figure 3.27. The impact of the structural lattice constant on the classification cannot
be clearly understood by the depiction in the SHAP summary plot. Furthermore, an increasing num-
ber of valence electrons Importance of X

Site
associated with site X impacts the model’s prediction towards the “high”

spin-polarization class. The large magnitude of impact can easily be understood, as the X site con-
stitutes the majority of valence electrons towards the system’s total number of valence electrons.
However, this relation is less clear for the total number of valence electrons. The magnetic moment
associated with the Z site typically ranges between −0.25 𝜇𝐵 and 0.75 𝜇𝐵, while most of the mo-
ments are close to 0 𝜇𝑏 and exhibits an impact on themodel’s prediction, which shifts the prediction
towards a “low” spin-polarized state as𝑚𝑍 increases. For 𝑍𝑋,𝑚𝑋2

, 𝑒val
𝑌 and 𝑒val

𝑍 the relation, that
increasing feature values, causes the model to predict the “low” spin-polarization class, also holds.
The phase as binary variable slightly favors a “high” class prediction for XA alloys, while the impact
on the model prediction favors a “low” polarization prediction for L21 compounds.
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In Figure 3.28 depictions showing the relations between the features𝑀Abs,𝑚𝑋1
, lattice con-

stant, and 𝑒val
Tot and the corresponding obtained SHAP values are shown in detail. These depictions

allow a more thorough explanation than the rather macroscopic summary plot.

(a) SHAP value and feature relation for𝑀Abs. (b) SHAP value and feature relation for𝑚𝑋1
.

(c) SHAP value and feature relation for lattice con-
stant.

(d) SHAP value and feature relation for the total
number of valence electrons.

Figure 3.28: Overview of selected features (explicitly: 𝑀Abs. 𝑚𝑋1
, lattice constant, and total number of

valence electrons) and their relation to the corresponding SHAP values.

From Figure 3.28a the physical intuition expressed before, that vanishing sums ofSum of Absolute
Magnetic
Moment

absolute
magnetic moments benefit a classification as a compound with a “low” spin-polarization of the DOS
at the Fermi level. Increasing values of𝑀Abs cause an increasing SHAP value until a value of about
𝑀Abs = 1 𝜇𝐵 from which the SHAP value continues to decrease. Observing this pattern can be
compared to the proportionality observed in Figure 3.27 for 𝑚𝑍 . An increasing overall magnetic
moment, contributed to by 𝑚𝑍 , possibly causes a shift in the DOS, which prevents half-metallicity
from arising. Examining Figure 3.28b for the magnetic moment𝑚𝑋1

the SHAP value increases with
increasing moment until about 𝑚𝑋1

= 2 𝜇𝐵 and then begins to decline again. It can be seen that
𝑚𝑋1

has a similar relation to the corresponding SHAP values as 𝑀Abs for small values of features.
This is a consequence of the convention applied, that the axis of𝑚𝑋1

is chosen as the reference axis
for the compound and hence, by definition, non-negative.
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For the lattice constant, Lattice Constant
Impact

as seen in Figure 3.28c, there is a complex relation between the lattice
constant and the impact on the model’s prediction. Very low lattice constants favor a highly spin-
polarized DOS at the Fermi level. Beyond that, in the middle range, a few predictions are impacted
towards the “high” spin-polarization by the lattice constant, while for many compound predictions,
the impact is nearly neutral. There is the range at both the lower and the higher end, where the
lattice constant contributes towards predicting a low spin-polarized DOS at the Fermi energy. Ob-
servations from Figure 3.28d could include that for a total number of 18 and 19 valence electron
in the compound’s unit cell, the prediction is shifted for all the data points with these total valence
electron numbers towards a highly spin-polarized DOS. Furthermore, an increase in the SHAP val-
ues can be observed starting from a total number of valence electrons of 27 up to 31. These values
include the values for the total number of valence XAI Depicts

Partly Slater-
Pauling-Like
Behavior

electrons of 18 and 28, which are known from
the Slater-Pauling behavior of inverse Heusler alloys. However, the value of 24, which is established
from the Slater-Pauling behavior for both L21 and XA phases, is not clearly visible in this depiction.
Examining the total magnetic moment of the compound’s unit cells and the resulting SHAP values
from Figure 3.29, it can be concluded that for the integer magnetic moments −1 𝜇𝐵, 1 𝜇𝐵, 2 𝜇𝐵,
3 𝜇𝐵 and 4 𝜇𝐵 the SHAP value spikes to some extent, which indicates the prediction to be impacted
towards a highly spin-polarized DOS at the Fermi energy for these particular compounds, based on
the total magnetic moment’s integer value. This is another indication of the known Slater-Pauling
behavior. However, starting from a magnetic moment of 5 𝜇𝐵, the prediction impact of the total
magnetic moment changes to shift towards a low spin-polarization, which is in line with the obser-
vations from the features𝑀Abs and𝑚𝑍 impacts.

Figure 3.29: Depiction of the relation between the total magnetic moment 𝑀 and the corresponding
SHAP value.
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Furthermore, while 𝑚𝑌 has a complex relation to the corresponding SHAP value, as can be
seen by Figure 3.27, the value and its relation to the SHAP value is illustrated in Figure 3.30 alongside
with the 𝑒val

𝑋 feature.

Figure 3.30: Relation between the features 𝑒val
𝑋 (upper) and 𝑚𝑌 (lower) and the corresponding SHAP

values computed on the training data set togetherwith the relation to another feature value,
each encoded using a color bar.

From Figure 3.28d multiple conclusions can be drawn. First, it is clear, that valence electron
numbers at the X site contribute to a predicted lower spin-polarization of the DOS at the Fermi level
for values below 6. Coincidentally, transitionmetals withInterplay of Two

Features
such valence electron numbers typically do

not exhibit strongmagnetic properties, as can be seen by the coloring introduced in the figure, which
depicts the magnetic moment at one of the X sites of the unit cell. For valence electron numbers
at the X site above or equal 7, the feature impact suggests a highly spin-polarized DOS at the Fermi
level.
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Also, the relation between 𝑚𝑌 and the corresponding SHAP value can be observed from
Figure 3.30. The very low feature values (𝑚𝑌 < −2 𝜇𝐵) favor—in the model’s prediction—a low
spin-polarization for the DOS at the Fermi level is suggested. For feature values in the ranges−2 <
𝑚𝑌 < −0.5 and 2 < 𝑚𝑌 < 4, it appears that a highly spin-polarized DOS at the Fermi level
would be favored in the model’s prediction. Especially in the range around a vanishing 𝑚𝑌 𝜇𝐵
is densely populated and contributes barely any impact on the final prediction whatsoever. From
the introduced color bar, it is apparent that many of those compounds located in the range of a
vanishing 𝑚𝑌 represent the Y site as being occupied by 4𝑑 elements, which typically exhibit less
strong magnetic moments than 3𝑑 elements.

Besides all the depictions showing more macroscopic explanations for the model’s predic-
tions, local explanations for selected compounds from the Local

Explanations
training set are includedwithin Figure 3.31.

Local explanations aim to provide insights into why an individual prediction was made rather than
explaining the impact trend a feature has across multiple predictions. These local explanations are
included in this discussion to demonstrate, that XAI tools can also be used to understand individual
predictions. For the local explanation, a red arrow denotes a feature that impacts a prediction of a
highly spin-polarized DOS at the Fermi level for this particular compound. Each blue arrow indicates
a predictive feature impact towards a low spin-polarization for the given compound. As previously
explained, the prediction is shifted from the base value (the expectation value of themodel) towards
the prediction by contributions of each feature impact.

For the L21 compound Mn2YSi, Mn2YSifor which the local explanation is shown in Figure 3.31a the
impact of the individual features is visualized. There, it can be seen that the total magnetic mo-
ment is given by an integer value. However, the total number of valence electrons is 21, which does
not satisfy the typical Slater-Pauling behavior. Mn2YSi is part of the training data set with a DOS
spin-polarization at the Fermi energy of 91 %, which does not represent a perfect half-metallic po-
larization but already is close to a factual half-metal. The prediction having Ni2CoAlthe closest to average
probability—according to the ML model—of all training compounds has been included to demon-
strate the very different impacts of features like e.g. 𝑚𝑍 which are very similar for L21 Mn2YSi and
XA Ni2CoAl but still have a very different impact on the overall prediction. The compound Ta2TiSi

Ta2TiSishown in Figure 3.31c is classified as a compound having a low spin-polarized DOS at the Fermi level,
which is obvious by the fact that XA Ta2TiSi is entirely non-magnetic.
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3.3 Ultrathin Films of (001) oriented 3d Transition Metal Layers
on fcc Noble Metal Substrates

Ultrathin film systems, Magnetism in
Thin-Films

which consist of multiple layers including such that exhibit magnetic proper-
ties, are commonly referred to as magnetic multilayers. Within magnetic multilayers, atomic mag-
netism is typically more prevalent than in bulk materials. The reason is that the surface atoms have
fewer neighbors; hence, their electronic and magnetic configuration is closer to the corresponding
atomic properties. Additionally, themagnetism inmagneticmultilayer systems is tunable by various
structural properties of the film system and environmental conditions, which allows complex mag-
netic configurations to form. Hence, magnetic multilayers are capable of hosting Magnetic

Multilayers as
Nanoscale
Skyrmion Host
Systems

stable nanoscale
Skyrmions (the scale refers to the radius of the Skyrmionbeing around 1 nm andhence exceeding the
scale of atomic radii which typically have an order of magnitude of 1 Å) at room temperature. [328]
While Skyrmions also appear in bulk materials [329], layered magnetic film systems—from amateri-
als design perspective—can be tuned to create a very sophisticated environment for the long-term
stabilization of Skyrmions at operating temperatures of spintronics devices. Tunability of

Magnetic
Multilayers

Furthermore, the im-
portance of surface effects in film systems relative to theoretical bulk systems sets layered magnetic
film systems apart from bulk systems. Such are typically modeled without any surface. It is ap-
parent that due to the ratio of surface atoms being significantly larger in film systems than in real
3-dimensional crystal lattices, surface effects contribute to stronger magnetic multilayer systems
properties. [330] A special consequence of these relevant surface effects is that film systems tend
to be sensitive to small external magnetic fields, which can cause significant property changes in the
magnetic multilayer systems. [330, 331] Surface EffectsSome aspects in which magnetic multilayer systems can be
tuned—which are investigated in this study—are listed in the following:

• Layer and film thickness [332, 333]

• Layer composition [332]

• Layer order [332]

• Choice of FM or AFM order [330, 332, 334]

Beyond the tunable film properties, which are examined within this project, there are also environ-
mental conditions—which are more relevant experimental settings—impacting the system’s prop-
erties, as listed in the following:

• Film growth conditions [335]

• Operating temperature [331]

External fields also represent a tunable property of a film system’s environment, which could be
investigated using DFT. [331] However, this project is restricted to evaluating structure-related tun-
able film parameters. The number of tunable system properties yields a large space of possible
structures and operating environments, which is challenging to explore systematically. Examining
the layer order and composition dimensions alone constitutes a structural phase space that grows
exponentially with the number of layers. In this growth, the number of unique layer compositions
represents the basis. Recent

Technological
Advancements

To engage in systematic studies of magnetic multilayer systems of this scale,
dedicated high-throughput frameworks, strongly parallelized ab initio codes, and (HPC) infrastruc-
tures and resources are required, which (in part) were not available until recently.
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Room temperature stable Skyrmions are known to emerge in film layer combinations of e.g.
Fe, Co, Ir, and Pt. [332, 336, 337] Combining this knowledge with the FM and AFM properties being
inherent to a significant proportion of the 3𝑑 transition metal group constituted the motivation to
conduct a systematic high-throughput ab initio study. The magnetic properties of films consisting
of layers of 3𝑑 transition metals on fcc noble metal substrates are discussed in this section.Magnetic

Properties
Focused Analysis

The
analysis of the magnetic properties of the magnetic multilayer systems and the use of ML within
this high-throughput study are discussed in detail in the following. The use of predictive ML to
predict improvedab initio inputs showed the capability to improve the convergence rates and reduce
computing costs in high-throughput applications.

3.3.1 Calculation & Film Setup

Before a high-throughput ab initio study can be performed on a large set of structures, it is neces-
sary to set up the examined structures correctly. For some high-throughput projects, setting up the
structures might be as easy as downloading and loading crystal structure information files using the
AiiDA framework.Structural Setup

in
High-Throughput

[9, 10] However, in this project, a dedicated workflowwithin the AiiDA-FLEUR [11,
92] plugin has been used to set up the layered film structures. The scripts used to set up the struc-
tures, submit the FLAPW first-principles calculations, and perform the data analysis are published
in [338]. Also, the AiiDA database containing the computed film systems is published in [97]. The
structure and calculation setup are discussed in detail in the following.

Choice of Film Constituents

It is known that layered film systems containing the fcc noble metals Ir and Pt alongside the FM 3𝑑
transition metals Fe and Co are capable of hosting Skyrmions. [332, 336, 337] This suggests that the
combination of layers consisting of elements from the fcc noble metal family (containing Rh, Pd, Ag,
Ir, Pt, and Au) and layers containing 3𝑑 transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn)
represents a promising subclass, of the structural phase space of magnetic multilayers, to exhibit
spintronics applications relevant properties. It is well known for 3𝑑 transition metal elements to
exhibit3𝑑 Transition

Metals are
Known to

Display Stable
Magnetic

Properties

magnetic properties. [339] However, as film systems, surface effects play an important role.
These effects can increase the observed atomic magnetic moment in film systems at layers close
to a film surface. It has been observed that also 4𝑑 and 5𝑑 transition metal elements can exhibit
significant magnetic moments in ultrathin films. [339] Still, considering the different elements in
each row of the 𝑑 block of the periodic table, the 3𝑑 transition metals are most likely to exhibit
stable magnetism. [339] Hence, the decision was made to restrict the selection of magnetic layer
elements to the 3𝑑 transition metals during this project. The fcc noble metals are used as substrate
material.

It could be argued that the noblemetals Os and Ru also represent suitable substratematerials
for layered magnetic films. However, both elements occur naturally in a hexagonal close-packed
(hcp) configuration.Restriction to fcc

Noble Metal
Substrates

This would require a different structural setup and configuration. Calculation
results based onOs and Ru substrates would bemore difficult to compare to the filmswith fcc-based
substrates. For this reason, this study is restricted to fcc-based noble metal substrate film systems.
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Film Construction

The film setup follows the Create-Magnetic-Filmworkflowdescribed previously in section 2.4.2, pub-
licly available within the AiiDA-FLEUR plugin. [11] Within this workflow, at first, EOS calculations are
performed to compute the substrate bulk lattice constants. This is especially important, as the sub-
strate lattice constant and substrate structure also determine the in-plane position coordinates for
the Substrate

Defines In-plane
Film Structure

magnetic layers added to the substrate. Beyond the EOS computation, the substrate layers are
kept fixed for the relaxation steps performed within the Create-Magnetic-Film workflow. Therefore,
only the magnetic layers are allowed to relax along the direction of the film’s out-of-plane axis (in
this case, this is chosen to be the 𝑧-axis). Magnetic Layer

Relaxation Along
𝑧-axis

The results for the substrate fcc lattice constants are shown
in Table 3.18. The accuracy of the lattice constants is primarily determined by the EOS scaling res-
olution (in this case, 5 ‰ of the initial bond length guess computed using the Materials Project
database [94]). Hence, the EOS-originated lattice constants shown in Table 3.18 are rounded to the
second decimal digit.

Substrate Element EOS Minimum [Å] GGA FLAPW Reference [Å] Experimental Values [Å]

Rhodium 3.83 3.83 [340] 3.80 [341]
Palladium 3.94 3.94 [340] 3.89 [342]
Silver 4.14 4.15 [340] 4.09 [342]
Iridium 3.87 3.87 [340] 3.83 [343]
Platinum 3.97 3.97 [340] 3.92 [344]
Gold 4.15 4.16 [340] 4.08 [342]

Table 3.18: Overview of the substrate elements EOS resulted lattice constants compared to a GGA (PBE
[325]) FLAPW reference [340] and experimental values.

From Table 3.18, a slight systematic overestimation of the EOS-originated, as well as the GGA
FLAPW reference lattice constants can be seen in comparison to the experimental values, which
is commonly known for GGA XC-based ab initio results. Furthermore, it can be seen that there
is an excellent agreement between the EOS resulting lattice constants, acquired using the Create-
Magnetic-Film workflow, and the GGA FLAPW reference values, which are accessible in the sup-
plemental material of [340]. Lattice

Constants Agree
With GGA
Reference

After the EOS lattice constant computation has been performed once
for every substrate, within the Create-Magnetic-Film workflow, the acquired lattice constants have
been reused for the submission of the Create-Magnetic-Film workflow for other film systems.

To ensure reproducibility, the bond length estimates, computed using the bond length data
from the Materials Project [94], for the combinations of all magnetic and substrate elements are
provided in appendix B, together with an equation directly relating the bond length estimates to
the ILDs computed as an initial guess. This is necessary, as the computed bond length estimates
could change over time as the Materials Project database will be extended.

To efficiently use computational resources, considerations were made to optimize the struc-
ture setup, with the goal in mind to increase the number of structural symmetry operations within
the film systems. This led to the decision to compute symmetrical films instead of film systems with
magnetic layers added to only one substrate side. Themagnetic layers are added along the fcc [0 0 1]
direction. Using this setup, the number of Choice for

Symmetric Film
Setup

equivalent atoms within the structure is increased com-
pared to non-symmetric film structures within the assumption that the magnetic layers on either
side share the same magnetic behavior and orientation, independent of each other.
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Themiddle substrate layer is placed at 𝑧 = 0 Å in this setup. The goal of setting up symmetri-
cal film systems for computational efficiency also concludes that the substrate layer count has to be
given by an odd number of layers, as this choice conserves the symmetry operations of 𝑧-reflection
and inversion.

Based on previous calculations, it was known that the ILDs of the magnetic layers only devi-
ated by lower than 5 ‰ computed using three substrate layers compared to the relaxed ILDs cal-
culated using a film with a substrate thickness of 15 layers. However, to ensure that the results

Choice for 5
Substrate Layers

would be comparable to films with a larger substrate layer count, it was decided to continue with
five substrate layers. This eliminates the necessity to recompute the film’s structural relaxation for
systems with thicker substrates. Hence, the assumption that the magnetic layers on both sides of
the substrate do not interfere with the relaxation of each other notably—given the chosen substrate
thickness—also holds according to these preliminary calculations.

Knowing that the film structure is entirely defined using the ILD guesses based on the bond
length estimation and the EOS fcc substrate lattice constant and considering that this project’s scope
is to examine magnetic films, it is still necessary to determine an appropriate magnetic initialization
for the magnetic layers. At first, the initial magnetic moment for each magnetic layer was set to
be given by 1 𝜇𝐵.Magnetic &

Structural
Initialization

This choice was motivated by the fact that the intention was to magnetize each
magnetic layer to the same degree initially and with Sc having only a single unpaired electron per
atom, the only integer atomic moment that could hence be chosen is 1 𝜇𝐵. With the outlined setup,
the number of film systems resulting from 𝑛Subst different substrate elements and 𝑛Mag magnetic
elements occupying a given number of 𝑛Lay magnetic layers on the substrate is provided by the
expression in equation (3.7).

𝑛Syst = 𝑛Subst (𝑛Mag)𝑛Lay (3.7)

Due to the exponential scaling of equation (3.7) with the number of layers, the structural phase
space is practically unlimited when it comes to possible magnetic layer orderings and elemental
combinations. Considering the computational resources available during this project, it was deter-
mined that threemagnetic layers on each substrate side are reasonable to compute within the given
resources and time constraints. This results in 6000 possible film combinations by the combinatorics
of the problem. This potential data set size exceeds the aforementioned data projects in this thesis.
Furthermore, the opportunity was taken to compute the corresponding films with 2 and 1magnetic
layers on each side. This essentially translates to the outer magnetic layer site being unoccupied
or the exterior and the middle magnetic layer site being unoccupied compared to the film systems
having three magnetic layers on each substrate side. This increases the number of combinations
according to equation (3.8) to 6660 systems.Total of 6660

Film Systems

𝑛Syst = 𝑛Subst

3
∑

𝑛Lay=1
(𝑛Mag)𝑛Lay (3.8)

A schematic depiction of the resulting film structures and quantity naming conventions is given in
figure 3.32. As already discussed in section 2.4.2 the initial guess for the ILD of the magnetic layer
on the outside of the film is scaled by a factor of 0.95Scaling for

Surface Layer
as it is well known, that the surface layer of a

film tends to adhere to the sole neighboring layer slightly more than a layer which has two adjacent
layers.
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Figure 3.32: Schematic depiction of (001) oriented film structures resulting from the structural setup
workflow, including naming conventions. The magnetic A, B, and C layers are colored. The
individual ILDs between the layers 𝑑𝑋𝑌 are labeled within the visualization. Figure similar
to [55].

Choice of Simulation & Workflow Parameters

All film calculations have been performed using the GGA type PBE [325] XC functional using the
FLAPW code FLEUR2 on a grid of 20 × 20 × 1 k-points using a𝐾max cutoff of 3.8. Both the k-point
grid as well as the𝐾max cutoff have been validated regarding their impact on the relaxed ILD results
compared to computationally more intensive Computational

Setup Details
settings such as 50×50×1 and𝐾max = 5 to alter the

resulting ILDs by less than 5 ‰. The charge density SCF mixing has been defensively set to 0.5 %.
This relatively small mixing parameter assists with preventing the so-called charge sloshing. Charge
sloshing describes relatively long-ranged oscillations of the charge density distributions between
SCF iterations. The Kerker mixing scheme can also avoid charge sloshing in film systems. [51, 54]
However, the Kerkermixing schemewas tested on a small subgroup of the Overcome

Charge Sloshing
examined films before the

actual high-throughput study and led to lower convergence rates than simply lowering the charge
density mixing parameter. Hence, the decision was made to change the mixing parameter rather
than decrease the convergence rate by employing the Kerker mixing scheme.

The forcemixing parameter relevant to the relaxationwas set to 1.7. A relaxation is said to be
converged as the largest force acting parallel to the out-of-plane 𝑧-axis, on the atoms constituting
the magnetic layers, is lower than 5 ⋅ 10−5 Ha

𝑎0
. This force convergence criterion could be considered

relatively strict. However, this particular convergence criterion has been chosen to ensure that the
structures can be regarded as entirely relaxed.

2 The computations performed underlying this section of the results were performed using the FLEUR git commit hash
e9d2b5ad19c1e89fe0f6b820b76700cd18663cf9 compiled and executed on the supercomputers JURECA-DC and
CLAIX.
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While the ILD changes itself would not be remarkably large compared to a less restrictive
criterion, already minor deviations in the structure can significantly affect the magnetic properties
of the film, which are the main focus withinRelaxation Setup

Details
this project. Initially, the force mixing scheme was set

to be straight linear mixing. The first relaxation iteration to exhibit a force lower than 0.025Ha
𝑎0
for

each relaxed atomic layer changes the mixing scheme to a BFGS-based scheme for the following
relaxation iterations. The individual SCF calculation, which is part of the relaxation workflow, is said
to be converged starting reaching a charge density distance below 10−3 m e−

a3
0
. A single ab initio SCF

calculation was given 100 iterations to converge, and a SCF calculation was allowed to be restarted
nine times during a Create-Magnetic-Film workflow if the individual SCF calculation failed for a rea-
son which could be fixed by continuing the SCF calculation. A single Create-Magnetic-Film workflow
performs at most 70 relaxation steps to relax a film system. The muffin-tin radii of the atoms in the
film are first set by the FLEUR input generator based on the crystal structure and, correspondingly,
the space available. The radii are scaled using a factor of 0.96 before the first relaxation step to allow
the muffin-tins to relax.

3.3.2 Workflow Outputs

From the Create-Magnetic-Filmworkflow, a plurality of physical output data like e.g. structure, mag-
netic moments, total energy, etc. is available. Beyond the physical outputs, additional information
about the workflow execution itself is available. This information includes the number of required
relaxation steps and the total number of performed SCF iterations. The main outputs of the work-
flow are briefly discussed in the following.

Film Structures

The relaxed film structure is stored within a node of the corresponding AiiDA database at the end
of each successful Create-Magnetic-Film workflow.Workflow

Outputs
Symmetric and
Non-Symmetric

Films

Using the previously discussed symmetric film
setup, which is also documented in a dedicated code publication [338], the workflow outputs both
the symmetric film and the equivalent non-symmetric film systems. In the latter case, the lower
three substrate layers are not replaced with magnetic layers in the setup process as described in
section 2.4.2. Hence, the substrate thickness in these non-symmetric film systems is increased by
three layers. The two stored structures at the end of a successful workflow are shown in Figure 3.33.
Within AiiDA-FLEUR [11], there also exist dedicated routines that are capable of either reducing or
increasing the number of substrate layers. Therefore, the relaxed magnetic layers are portable to
substrates of different thicknesses by reusingResults

Portability
the relaxed ILDs. This portability is part of the reason

it was ensured that the ILDs deviation, for increasing substrate layer counts, is lower than 5 ‰
compared to the selected number of substrate layers.
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Figure 3.33: Depiction of structural outputs (symmetric and non-symmetric film systems) of the AiiDA-
FLEUR [11] Create-Magnetic-Film workflow. The magnetic layers within the films are col-
ored, and the substrate layer atoms are depicted as black circles.

Displacements & Magnetic Properties

Beyond the structure, the Create-Magnetic-Film workflow also collects the positional displacement
of the relaxed atoms. This displacement corresponds to the coordinate difference of the initialized
positions of the atoms compared to the relaxed positions. DisplacementsFurthermore, the magnetic moment
of each nonequivalent atom in the set-up structure is stored alongside the total unit cell moment,
which also contains an interstitial moment contribution. This includes the converged magnetic
atom’s moments of the individual magnetic layers and the induced moments from each substrate
layer. Additional information is stored in the workflow outputs, originating from the FLEUR output
file, such as the film system’s total energy and the Fermi energy.
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3.3.3 DFT-Integrated Machine Learning

Computing all 6660 structures using the described Create-Magnetic-Film workflow with the dis-
cussed calculation parameters and cutoffs, a successful ab initio-based relaxation has been per-
formed for 64.8 % of the examined structures. In high-throughput DFT applications, error rates
of around 10 % are not uncommon. [93]Initial Relaxation

Success Rate
64.8 %

This concludes that the error rate in the presented high-
throughput study is far too high. A naive approach to tackle convergence issues in high-throughput
settings like this would be a trial-and-error-based approach in which the calculation parameters,
magnetic initialization, and structures are altered. However, this represents a somewhat unstruc-
tured and unsystematic approach to improve the convergence rate and hence might include the ne-
cessity to use significant amounts of computing time before the tuned calculation parameters lead
to additional structures relaxing successfully.Requirement for

Systematic Input
Optimization

Strategies

To systematically tackle this challenge, an ML-based
method, which combines the methodology of batch learning—using converged DFT results—and
the described first principles-based workflow. Within this method, which is further denoted as DFT-
integrated ML, it was possible to predict both the ILDs and the 3𝑑 transition metal magnetic layers
moments based on the already relaxed ab initio results. This process can be performed iteratively as
the training data for the ML models increased as soon as more DFT relaxations finished successfully,
as shown in Figure 3.34.Portability to

Other Input
Properties

While the DFT-integrated ML scheme has been applied to predict the ILDs
and magnetic moments during this project, this scheme can, in principle, be applied to any quantity
which is both input and output of an ab initio calculation i.e. is optimized through a DFT calculation.
Hence, the methodology could also be used to optimize e.g. non-collinear magnetic angles or even
the charge density itself.

Ab Initio Simulation

Results Database

ML Model

𝑚𝐴, 𝑚𝐵, 𝑚𝐶 ,
𝑑𝐴𝐵, 𝑑𝐵𝐶 , 𝑑𝐶𝑆𝑢𝑏

Figure 3.34: Schematic depiction of the iterative DFT-integrated ML workflow in this particular applica-
tion, representing a form of batch learning in conjunction with ab initio methods integra-
tion. From the results database, the predicted target quantities and the film’s constituents’
atomic numbers are used in the model training process.

However, the ability to set ILDsmanually without using theMaterials Project-originated bond
length estimates as initial guesses was not available in the AiiDA-FLEUR plugin and needed to be
included. [11]Extension of

AiiDA-FLEUR
I developed this additional functionality for the AiiDA-FLEUR plugin. While this de-

velopment occurred, the first batch of inputs containing ML-predicted magnetic moments for the
magnetic layers could already be used in FLAPW computations.
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Within the DFT-integratedML approach, the sole input features used during this project were
the atomic numbers of eachmagnetic layer and the substrate. In the case of an unoccupied layer cor-
responding to filmswith only two or onemagnetic layer, the respective atomic number has been cho-
sen to the value zero. Atomic Numbers

as Sole Input
Features

This section discusses the methodology and the advantages of DFT-integrated
ML in high-throughput applications in detail in the following.

ML Prerequisites & Modeling Goal

To train an ML model using the DFT-based data acquired by the successful run of AiiDA-FLEUR [11]
workflows and also to further analyze the data, the data had to be extracted from the SQL type AiiDA
database. An overview of the quantities extracted from the database is shown in Table 3.19. Data Extraction

Relaxation Output Last SCF Output Workflow Meta Information

𝑑𝐴𝐵, 𝑑𝐵𝐶 , 𝑑𝐶𝑆𝑢𝑏, 𝑑𝑆𝑢𝑏
† 𝑚𝐴,𝑚𝐵,𝑚𝐶 𝑛Tot SCF

Iter , 𝑛Tot Conv
Force Iter

𝛥𝑑𝐴,𝛥𝑑𝐵,𝛥𝑑𝐶 , 𝑑Total
Film 𝑚𝑆𝑢𝑏𝐴,𝑚𝑆𝑢𝑏𝐵,𝑚𝑆𝑢𝑏𝐶 𝑛5⋅10−3

Force Iter
††, 𝑛10−3

Force Iter
𝑍𝐴, 𝑍𝐵, 𝑍𝐶 , 𝑍𝑆𝑢𝑏 𝑀Tot

Cell,𝑀Tot,𝑀Abs 𝑛5⋅10−4
Force Iter, 𝑛10−4

Force Iter
Number of structural unique atoms 𝐸𝐹 , 𝐸Tot, 𝐸Val,𝛥𝐸Band 𝑛DFT IntML

Iter
*

† EOS result, not relaxed during the relaxation step.
†† Beyond the global relaxation, convergence criterion of 5 ⋅ 10−5 Ha

𝑎0
, also the number of force

relaxation steps, required to achieve other force thresholds are included in the extracted data
set. The alternative force criteria are denoted in the corresponding superscripts, in units of Ha

𝑎0
.

* Each successful calculation is assigned a number 𝑛DFT IntML
Iter which indicates how many DFT-

integrated ML iterations have been performed before the individual film system converged.

Table 3.19: Overview of quantities extracted from the AiiDA database for data analysis and DFT-
integrated ML model training, grouped by the data origin, indicating at which point of the
workflow execution and computation the individual quantity has been extracted. The nam-
ing convention order for the magnetic moment has been continued on the substrate layer
moments. Hence, the magnetic moment of the substrate interface layer is referred to as
𝑚𝑆𝑢𝑏𝐴, and the magnetic moment of the central substrate layer is referred to as𝑚𝑆𝑢𝑏𝐶 . In
this table, 𝛿𝑑𝑋 denotes the deviation of the position of layer X in the relaxed configuration
compared to the initial structural setup. 𝑀Tot

Cell denotes the total moment of a film’s unit
cell, including interstitial contributions, while𝑀Tot denotes the summation of film’s atomic
moments. The 𝑧 directional spatial displacement corresponding to the layer𝑋 is denoted as
𝛥𝑑𝑋.

The data set extracted from the AiiDA database has been published. [338] This is also the case
for the generated AiiDA database itself. [97] However, the DFT-integrated ML-based structural and
magneticmoment predictions are entirely based on the four atomic numbers𝑍𝐴,𝑍𝐵,𝑍𝐶 , and𝑍𝑆𝑢𝑏
as training features. Prior to anymodeling presented in this section, a test setwas sampled randomly
from the extracted data. Subsequently, the model input features have been scaled according to
equation (3.2). Randomly

Sampled Test Set
The test set was set to be the size of 20 % of the entire data set. First, a suitable

model had to be selected to train an ML model for the predictive DFT-integrated ML application.
Using a similar set of different models and model types, as in the previously discussed projects, the
XGBoost model [125] exhibited the best 4-fold CV performance on the randomized remaining 80 %
of the data.
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The CV score during the model selection process has been determined for the mentioned
set of models without any hyperparameter optimization.Model Selection Given that the prediction of both the ILDs
(𝑑𝐴𝐵, 𝑑𝐵𝐶 , and 𝑑𝐶𝑆𝑢𝑏) and also the magnetic layer moments (𝑚𝐴,𝑚𝐵, and𝑚𝐶) to be used as ML-
optimized starting parameters, for an ab initio-based calculation, imposes a regression problem, it
is necessary to think of a metric suitable to evaluate themodels. TheMAE has been used as both CV
and test metric as this metric returns errors in the unit of the predicted quantity. This allows for the
interpretation of the resulting error and the decision of whether the MAE magnitude is acceptable
for the predictive modeling process. This is crucial as the MAE prediction error can be compared to
the error associated with the presented ILD guessing method based on the Materials Project data.
In principle, this results in six individual regression problems to be modeled. However, this task is
relatively easy to generalize, given the similarities of the modeling tasks. [338] During the predictive
modeling application, a hyperparameter optimization was performed based on the 4-fold CV score
calculated within aHyperparameter

Optimization
Using 4-Fold CV

grid search algorithm. The set of hyperparameters that has been searched is
documented in [338]. After the hyperparameter selection and evaluation of the model using a test
set, themodels were retrained before being used to predict optimized structural andmagnetic input
properties of the previously not successfully relaxed film systems.

Model Performance & Modeling Results

As outlined previously, a model evaluation is performed before the models are retrained on the
entire data set before the predictive procedure. This evaluation also includes calculating a test MAE,
determined using the holdout method, based on 20 % of the available data set at that particular
DFT-integrated ML iteration.Model Test

MAEs
The test MAE values for both the magnetic layer ILD predictions and

the predictions for the magnetic moments of the magnetic layer are depicted in Figure 3.35.

Figure 3.35: Test scores of the models, which were used for ILD (left) andmagnetic moment (right) input
parameter prediction, based on the previously converged calculations.
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From Figure 3.35 it is apparent, that there is no clear trend for both the ILDs MAE and the
magnetic moments MAE with increasing data set size. Observing the scale of the magnetic moment
test MAE, it is apparent that the errors have comparable sizes for the different layers. No Trend in

Prediction
Models MAE for
Increasing
Amounts of
Training Data

This is not as
clear the case for the MAE of the ILDs. The quantity 𝑑𝐶𝑆𝑢𝑏 displays the lowest MAE in Figure 3.35,
which can be explained by the fact that the substrate always neighbors the C layer and hence, as the
impact of the element situated at the B layer on the MAE for the quantity 𝑑𝐶𝑆𝑢𝑏 can be assumed as
relatively lower than the impact of the element situated at the C layer and the substrate element,
which makes 𝑑𝐶𝑆𝑢𝑏 comparably easier to learn for the models. As the subspace of the substrate
elements is lower than that of the magnetic layer elements, this results in a minor variation in the
𝑑𝐶𝑆𝑢𝑏 compared to the other ILDs. A similar argument can be brought up when comparing the
MAE of the ILD 𝑑𝐴𝐵, as the A layer has only one neighbor and hence less elemental variation in the
spatial proximity of the elements separated by the ILD 𝑑𝐴𝐵. However, the subspace of occupant
elements on layers A and B is still more extensive than the occupant’s subspace for the ILD 𝑑𝐶𝑆𝑢𝑏.
Combining both arguments concludes that the MAE for the quantity 𝑑𝐴𝐵 is found below the MAE
of 𝑑𝐵𝐶 , which has inherently the most considerable variation of elemental occupants in the spatial
proximity of the ILD 𝑑𝐵𝐶 .

This section will compare the test errors to errors determined in a posterior analysis using
the predictions and quantities extracted from the successful workflows. The posterior discussion
is crucial, as the model training in further DFT-integrated ML iterations assumes that the resulting
ILDs and magnetic layer moments are independent of the iteration during which the correspond-
ing structures were successfully relaxed. Assumptions

Associated with
DFT-Integrated
ML

Precisely, simply mixing the different DFT-integrated ML
iterations and using the FLAPW output data, as ground truth, for model training assumes implicitly:

• All film structures are equally challenging to relax/compute and hence have a comparable
modeling complexity across all DFT-integrated ML iterations. [55]

• EachDFT-integratedML iteration samples the phase spaceof all possible film structures equally
well. [55]

• No input parameters, besides the predicted input quantities, change using the DFT-integrated
ML predictions, i.e. the other calculation parameters (e.g. muffin-tin sphere sizes, cutoffs,
etc.) are independent of the predicted input quantities. [55]

• The relaxed structure and the corresponding magnetic state represent the sole possible ab
initio solution.

Knowing that multiple magnetic configurations can result from a DFT calculation, depending on the
provided input configuration, for the same compound, the last assumption is untrue. Despite that,
it will be shown that this approach can improve magnetic and structural starting points for ab initio
simulations in the high-throughput scale. Upon examining the test MAE values from Figure 3.35
and comparing them to the MAE values of the guessing approach, shown in Table 3.20, Guessing Method

Errors
it becomes

apparent that the bond length-based structure guesses from Materials Project [94] and the initial
magnetic moment guess of 1 𝜇𝐵 would have been outperformed in terms of accuracy of the sug-
gested inputs by the DFT-integrated ML approach. This evaluation of the MAE associated with the
guessing approach has been performed on the data collected in the initial DFT-integrated ML batch.
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Guessed Quantity MAE MAE Unit Relative MAE

𝑑𝐴𝐵 0.092 Å 6.4 %
𝑑𝐵𝐶 0.093 Å 5.6 %
𝑑𝐶𝑆𝑢𝑏 0.073 Å 4.0 %
𝑚𝐴 0.997 𝜇𝐵 116.8 %
𝑚𝐵 0.979 𝜇𝐵 216.1 %
𝑚𝐶 1.018 𝜇𝐵 148.8 %

Table 3.20:MAE of the initial guess methods used to relax the initial batch of structures, before the DFT-
integratedML process, to converge the database which theMLmodels have been trained on
initially. For the relative MAE, the MAE has been divided by the average quantity itself. The
average of each quantity has been computed using the relaxed film’s data. The relative MAE
is calculated using the standard deviation of the corresponding quantity and dividing it by its
mean value. Table extended compared to [55].

From Table 3.20, it can be seen in comparison with Figure 3.35 that the test MAE of the ML-
based predictions is significantly decreased compared to the guessing method. Also, as the struc-
tural guess is based on the Materials Project [94] database and the magnetic moment is estimated
equal for all elements initially, the guessing error is independent of the number of data points com-
puted previously during this study. The ML models test prediction MAE is around at least 33 %
better than the guessing MAE. It is self-explanatory that lower deviations from theTheoretical Input

Improvement
with

DFT-Integrated
ML

inputs to the
converged/relaxed quantities correlate with an increased likelihood of an ab initio computation and
relaxation to be successful. Intuitively, drastically improved initial structures can also lead to fewer
relaxation steps being required. Furthermore, from Table 3.20, it can be seen that the relative errors
of the constant magnetic moment guess are very large; hence, given these large relative deviations
between the initial guess and the converged output moments, one would assume that improving
the magnetic starting point would already cause a boost in the achieved convergence rate.

The incremental development of the number of successfully relaxed film systems is shown
in Table 3.21, which resulted from the ML model’s predictions being used as input for re-computed
Create-Magnetic-Film workflows to provide optimized starting setups for the SCF calculations and
relaxations.

𝑛DFT IntML
Iter

Converged Structures
(Abs./Rel.)

Additionally Converged
(Abs./Rel.) ML Predicted Inputs

0 4316 / 64.8 % n/a. None
1 4886 / 73.3 % 570 / 8.6 % Magnetic Layer Moments
2 5917 / 88.8 % 1031 / 15.5 % Magnetic Layer Moments & ILDs
3 6149 / 92.3 % 232 / 3.5 % Magnetic Layer Moments & ILDs
4 6228 / 93.5 % 79 / 1.2 % Magnetic Layer Moments & ILDs
5 6282 / 94.3 % 54 / 0.8 % Magnetic Layer Moments & ILDs

Table 3.21: Development of successfully relaxed film structures per DFT-integrated ML iteration, includ-
ing labeling which iteration predictedwhich input quantities and relative development of the
data set size. The 3rd, 4th, and 5th DFT-integrated ML iterations are only distinguished from
the 2nd by the additionally acquired data, which is used for model training prior to new input
predictions and not by methodological differences.
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From Table 3.21, it is immediately apparent that the structural and initial magneticML-based
optimization had a significantly higher impact on the convergence rate than the sole optimization
of the magnetic starting configuration. This can be understood using the workflow failure reasons
observed in the initially computed film structures using the described guessing methods. The er-
rors that caused the Create-Magnetic-Film workflow to fail can roughly be classified into multiple
different reasons: Reasons

Relaxations Fail
1. SCF calculation failed to find a stationary point in the energy landscape and did not converge
within the set number of iterations (100 per SCF calculation) and SCF calculation restart cutoff
(seven restarts).

2. The relaxation failed to converge within the set cutoff of relaxation steps (70 steps).

3. Relaxation failure due to factors related to the structural setup, such as:

• Muffin-tins of the outer magnetic layer spilled into the vacuum during the relaxation,
resulting in a failed relaxation.

• Muffin-tins of two neighboring layers overlapped, i.e. the layers collided with one an-
other, causing the computation to fail.

It is important to point out that only the last of the previously mentioned reasons is LAPW-specific
and is hence transferable to other ab initio methods. An optimized magnetic configuration can
only solve the SCF convergence issue by improving the magnetic starting configuration of the SCF
calculation. The sole optimization of the magnetic moments does not alter the initial structural con-
figuration. This way, both other reasons, which are underlying the workflow failure, are not solved.
However, an improved input film structure—while improved here means “a structure Difference in

Optimizing
Magnetic &
Structural
Configuration

comparably
closer to the actual relaxed film”—has the capability to:

• Reduce the required number of relaxation steps

• Find input structures closer to the relaxed system configuration

Hence, the combination of an optimized initial magnetic configuration and an improved structural
input setup has the chance of drastically boosting the convergence rate, by tackling the different
workflow failure reasons simultaneously, while at the same time reducing the number of required
relaxation steps to acquire a successfully relaxed film configuration. The convergence rate improve-
ment is visualized in Figure 3.36.

From both Table 3.21 and Figure 3.36, it can be seen that after the second DFT-integratedML
iteration, which optimizes both ILDs andmoments of Incremental

Convergence
Rate as Result of
Better ML
Modeling

themagnetic layers, each of the following itera-
tions has a lower additional convergence rate, compared to the previous iteration. As the predicted
inputs have not been extended in the subsequent iterations, this concludes that the incremental
changes starting from the third iteration are the result of improved learning of the corresponding
models, based on the workflows which successfully relaxed the film based on the predictions of the
previous DFT-integrated ML iteration.
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Figure 3.36: Cumulative development of the number of converged film systems under an increasing num-
ber of DFT-integrated ML iterations. The horizontal blue line marks the initial count of con-
verged structures without any ML-optimized input parameters, and the horizontal green
line marks the count of converged structures, which was achieved by solely improving the
magnetic starting point of the SCF calculation using ML. Furthermore, the horizontal black
linemarks the count of converged structures, which resulted fromoptimizing both the initial
structure and the magnetic starting point using ML, and the horizontal red line marks the
number of 6660 structures. This number represents the entire phase space of structures
using the previously described film setup and element selection. Posterior to the last ML
input modeling step, the failure to reach self-consistency represented the dominant error.
Figure adapted from [55].

However, to test the previously mentioned assumptions, it is necessary to examine the con-
vergence rate and the composition of the successfully relaxed structures of the individual DFT-inte-
grated ML iterations. This includes the composition of the differentComposition of

Relaxed Films
iterations, as well as the overall

count of successfully relaxed structures per each element at each possible layer site. This can be
used to determine if there are elements that are particularly difficult to relax within the given film
structures. The elemental composition for the different iterations is shown in Figure 3.37.
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Figure 3.37: Depiction of the counts of the successfully relaxed film structures by their corresponding
elemental composition, colored for each DFT-integrated ML integration to gauge the sam-
pling homogeneity of the ML-based input optimization approach. “DNR” is short for “Did
not relax” and indicates the number of film systems with the corresponding elemental oc-
cupation that did not successfully relax within the Create-Magnetic-Film workflow despite
the ML-optimized input parameters. Figure extended compared to [55].

From Figure 3.37, it can be seen that the sampling in each DFT-integrated ML iteration is not
equally distributed. However, this concludes that the actual prediction error of the ML-based input
parameter optimization approach is likely larger than the test MAE values presented. This is not
surprising as the film systems that relaxed in a previousDFT-integratedML step improve the sampling
quality for similar compounds with similar composition within the entire phase space. Local Sampling

Improvements
This leads to

local sampling improvements, allowing the prediction of other film systems’ input parameters more
accurately than before, eventually causing the corresponding film systems to relax in a subsequently
executed workflow. It is also apparent that Cr occupied magnetic layers have difficulty successfully
relaxing in the A and C layers. For the C layer, Mn stands out for not successfully relaxing within the
Create-Magnetic-Film workflow. Within the B layer, elemental occupations of Mn, Fe, Cu, and Zn
seem to relax successfully at a comparably lower rate.
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However, overall, there are no extreme trends visible like that of a particular group of ele-
ments as e.g. magnetic or non-magnetic prevent a film relaxation systematically in specific layers.
This is also true for the substrate layer occupants. As Figure 3.37 does not explicitly display the suc-
cessful relaxation fraction for film systems where either the magnetic layer A or both the magnetic
layer A and B are unoccupied, this information can be found in Figure 3.38.

Figure 3.38: Depiction of the convergence rates per DFT-integratedML iteration for films with two (outer
circle) and single (inner circle) magnetic layers. There are 600 structures with only twomag-
netic layers and 60with only onemagnetic layer in the phase space of all possible structures
using the presented setup. Again, “DNR” is short for “Did not relax” and holds the same
meaning as in Figure 3.37.

From Figure 3.38, it is apparent about an eighth of the entire phase space of films with only
two magnetic layers did not relax successfully. Given that the simulation complexity for only two
magnetic layers is reduced compared to three magnetic layers, this is unintuitive. However, the
reasonmight be that significantly less training data is available in the twomagnetic layers case, which
might lead to less accurateAvailability of

Training Data for
two & one

Magnetic Layer
Films

input predictions as in the three magnetic layer setup. Considering that
all structures converged for the film systems having only a single magnetic layer—i.e. layers A and B
hence are unoccupied—the observation could be related to the fact that there is an even number of
magnetic layers present in the intermediate case. However, for a singlemagnetic layer, themodeling
complexity is significantly reduced due to the lack of another relaxingmagnetic layer interferingwith
the relaxation process of the inner layer.

Impact of DFT-integrated ML on Number of Relaxation Steps and SCF Iteration

After the observations that DFT-integrated ML for input optimization based on DFT-originated data
has the potential to increase the fraction of successfully relaxed structures from 64.8 % to 94.3 %,
in the94.3 % of

Structures
Successfully

Relaxed

following the impact of the optimized inputs on the required computing time is examined,
followed by an analysis of the actual real-world prediction errors. The required number of total SCF
iterations during the Create-Magnetic-Film workflows and the required number of relaxation steps
to reach a maximum absolute force of 10−3 Ha

𝑎0
are shown in Figure 3.39.
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Figure 3.39: Depiction of total SCF iterations (left) and the number of required relaxation steps (right)
to reach a force threshold of 10−3 Ha

𝑎0
for each DFT-integrated ML iteration. The white dot

marks the average value for the corresponding DFT-integrated ML step, while the red line
marks the median value. For all following boxplots, the whiskers denote 1.5 times the
interquartile range from the median, and the diamonds indicate outliers that exceed the
whisker range. The interquartile range corresponds to the boxes’ overall height, which
means that a box contains half of the data points for which the distribution is depicted.

From Figure 3.39, it can be seen that the total number of SCF iterations performed during
the Create-Magnetic-Film workflows in the different DFT-integrated ML iterations first increase on
average for the iteration in which only the magnetic initial moments have beenML predicted, which
indicates that the modeling complexity of the relaxation process is increased despite the improved
SCF magnetic starting point. However, as both the structure alongside the magnetic moments are
predicted using theMLmodel, the average number of total iterations is lowered below the initially—
i.e. without any ML optimized input parameters solely using the described constant magnetic guess
and the bond length estimate—required average number of total iterations. Decreased

Number of Total
SCF Iterations
Required for
Complete Film
Relaxation for
Structural &
Magnetic ML
Optimization

From this point on,
the average number of total SCF iterations is increasing, which is expected, as for each additional
DFT-integrated ML iteration, the films which remain to be computed have not been successfully
relaxed multiple times. Hence, each further DFT-integrated ML iteration leaves film systems to be
computed, which appear harder to relax than the structures relaxed in the previous iterations. A
very similar trend as for the average total number of SCF iterations can be seen for the number of
required relaxation steps to reach an absolute maximum force of 10−3 Ha

𝑎0
. From Figure 3.39, it can

also be seen that most systems do not require nearly the set cutoff of at most 70 relaxation steps to
relax successfully.

Based on the results shown in Figure 3.39, it is clear that there is a significant improvement
when it comes to the average required computational time. The averages from Figure 3.39 are
shown in Figure 3.40 alongside the average number of relaxation steps needed to match the strict
set force criterion of an absolute maximum force of 10−5 Ha

𝑎0
per DFT-integrated ML iteration.
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Figure 3.40: Depiction of the average number of total SCF iterations in each DFT-integrated ML iteration
(left, blue graph left axis), average number of relaxation steps to reach complete force con-
vergence for each DFT-integrated ML Step (left, red graph right axis), and average number
of relaxation steps to reach a maximum absolute force of 10−3 Ha

𝑎0
in each DFT-integrated

ML iteration (right). It is visible that the number of needed relaxation steps and the number
of required SCF iterations for each batch are correlated. This figure was adapted from [55].

From Figure 3.40, the trend that was already visible in Figure 3.39 becomes clearer, as the
trend is the same for all three convergence indicators. The average required number of force itera-
tions to reach an absolute force of less than 10−3 Ha

𝑎0
for each DFT-integrated ML iteration shows a

less steep increase of average required iterations for larger DFT-integrated ML iteration numbers as
both other relaxation convergence related quantities. This can be interpreted in the sense that to
lower the force convergence criterion in the relaxation from 10−3 Ha

𝑎0
to 10−5 Ha

𝑎0
significantly more

iterations are required than were necessary to—in average—completely relax the film structures
before any ML-based input parameter optimization. However, relaxations using a force criterion
similar to the threshold of 10−3 Ha

𝑎0
can already be sufficiently relaxed, depending on the intended

use of the relaxed structures. Comparing how many SCF iterations are required on average without
any ML-based input parameter optimization to how many are needed with both the magnetic mo-
ments and structure inputs predicted, it is possiblePotentially 17 %

Less SCF
Iterations

to reduce the number of required SCF iterations
in an average film relaxation by around 17 % and reduce the number of average required relaxation
steps from—in this example—at least 6 % up to around 29 %, depending on the chosen convergence
criterion. The 17 %, on average, less required SCF iterations directly translate to effectively 17 %
less required computing time forPotentially 29 %

Less Relaxation
Steps

the average film relaxation. This does not directly apply to the
number of required relaxation steps. However, fewer relaxation steps ultimately translate to fewer
DFT calculations thatmust be performed to relax the structure successfully. This, again, translates to
a lower number of calculations needed to be submitted to a computing center or device. Therefore,
this approach reduces the overall workload of the system and the subsequently occurring traffic and
computing time consumption.
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Comparing the average DFT-integrated
ML Can Increase
Computational
Efficiency

total number of required SCF iterations for themagneticMLoptimized
inputs and for both the magnetic as well as the structurally optimized inputs, the average reduction
of required SCF iterations even increases up to around 37 %. Hence, it is safe to say that utilizing
acquired data during high-throughput computations to optimize further computations inputs can
drastically decrease the required computing time with relatively low implementation effort when
implemented as a particular application case of batch learning while at the same time boosting
high-throughput DFT convergence rates. As already discussed, it should be aimed to optimize as
many input quantities as possible relevant to the workflow and simultaneously achieve the most
significant impact of the presented DFT-integrated ML methodology. However, this also raises the
question of when the ML-based optimization of the input parameters should be started.

Data Requirements of DFT-integrated ML

As seen from Figure 3.35, the test MAE values of the used models do not change drastically for addi-
tional DFT-integrated ML steps even though more data is acquired. Of course, the ideal amount of
available training data to start with the presented Ideal Starting

Point
methodology will vary for each problem depend-

ing on a few factors, including the modeling complexity of the particular problem. To determine
the accumulated amount of data, for which starting with the first iteration of DFT-integrated ML for
input parameter optimization would have been beneficial, it is possible to examine the model per-
formance on unseen data as a function of the accumulated data amount. A posterior analysis has
been performed for which the relative error comparing the guessing MAE and the prediction MAE
is shown as a function of the used amount of training data. This relative error comparison is shown
in Figure 3.41.

Figure 3.41: Comparison of the guessing MAE and the prediction MAE depending on the available train-
ing data using a relative error. The red dashed linemarks the point belowwhich themethod-
ology of DFT-integratedML outperforms the described guessing method. The development
of the guess MAE, depending on the increase of additionally acquired data, is relatively con-
stant, which is briefly shown in appendix C. Figure adapted from [55].
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For the posterior analysis displayed in Figure 3.41, the ML models used to predict the opti-
mized inputs have been trained on different sizes of training data sets shown on the 𝑥-axis in incre-
mental steps of 20 data points. The training data sizes indicated on the 𝑥-axis result from an 80 % to
20 % training and test splitting. Hence, the MAE of the prediction could be evaluated by predicting
the 20 % test set and comparing the result to the actual DFT result. Similarly, the guess error was
assessed using subsets of the input guess from the initially 4300 relaxed structure data and compar-
ing it to the DFT results. The hyperparameter optimization in this posterior analysis, compared to
the actual predictive modeling case, was skipped, and a generic XGBoost [125] with a fixed number
of estimators (as documented in [338]) has been used. From figure 3.41, it is apparent that the
DFT-integrated ML approach would have had lower MAE values and would hence have provided
better input parameters than the discussed structural and magnetic guesses, already after less than
a few hundred training data points have been available.Start After a Few

Hundred Relaxed
Structures Would
Have Been Ideal

Furthermore, as the relative MAE improve-
ment rate is significantly higher for small training data sets, an earlier start of the DFT-integratedML
scheme would ideally be combined with more frequent model retraining at the beginning, to bene-
fit from the incrementally improving prediction accuracies. The slope of the visible relational error
curve also explains why there is no clear trend for the test MAE visible in Figure 3.35 for increasing
data amounts for the different model iterations, as all the predictive ML models were trained on
data set sizes beyond 4300 data points. This indicates that an earlier start concerning the predic-
tion instead of guessing input quantities would have been beneficial to the quality of inputs and
subsequently also to the convergence rate and effectiveness of computing time usage. Concerning
future high-throughput studies using DFT-integrated ML, automated and continuous monitoring to
recognize when ML model predictions could be used as inputs instead of an initial guess is advised.

As previously described, DFT-integrated ML can be seen and applied as an iterative process,
which is formally depicted in Figure 3.42. However, what defines an individual iteration varies de-
pending on the high-throughput setting, project scale, and available resources and infrastructure
for e.g. frequent model training. This relates to the decision field in Figure 3.42, which decides if a
“significant” amount of additional data has been accumulated by successfully finished computations.
The term “significant” could be defined as small as anDiscussion of

Batch Data Sizes
individual additional data point. This would

conclude that retraining the prediction model could be performed for each additionally acquired
data point in the most extreme case, which would possibly justify switching to an online learning
approach - with the foreseeable drawback of having a model more difficult to evaluate. However,
more practical would be defining a “significant” additional data amount as a simple threshold and
retraining when an increased model test performance can be achieved based on the additionally
acquired data. This more frequent retraining would improve the input’s accuracy on the given data
basis as soon as possible. A possible consequence would be that the observed computing time-
reducing effects of DFT-integrated ML could arise earlier, compared to the presented example, for
which most successful relaxations did not benefit from optimized input parameters.

As the sampling of the individual DFT-integratedML iterationswas governed by the successful
relaxation of the structures rather than a specific sampling strategy, it is essential to mention that if
DFT-integratedML is applied in a high-throughput setting, sampling has to be considered for both the
initially gathered training data—Careful Sampling

to Avoid OOS
Predictions

which is acquired before any ML integration—and the additionally
acquired data as a result of each model iteration to avoid OOS prediction as the high-throughput
study progresses, as OOS predicted input parameters could negatively impact the success rate of
the executed calculations and workflows. A possible solution strategy is randomly sampling each
structure, which has not yet been successfully computed, upon each workflow submission to the
used computing architecture.
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As already discussed by the comparison of Figure 3.35 and Table 3.20, it can be seen in Fig-
ure 3.41 that for large amounts of training data, the ML prediction MAE relative to the guess error
approaches a value of about 1

3 for the ILDs 𝑑𝐴𝐵 and 𝑑𝐵𝐶 , while the other predicted quantities ap-
proachMAE values of about a fifth of theMAE of the initial guesses, which also reflects themodeling
complexity for the individual ILDs, based on their position in the film structure, as previously dis-
cussed. This translates to drastically improved (Improvement ranging from approximately 66 % up
to 80 %) Theoretical Input

Improvement
Range of 66 %
up to 80 %

input parameters using the DFT-integratedML approach than using the described guessing
methods in this posterior analysis of the films, which relaxed using only the initial guesses. While, of
course, the fixed initial moments guess is rather simple, it is surprising that the ML-based input pa-
rameter optimization can significantly improve the initial ILDs compared to the bond length-based
estimates, as the initial ILD estimation based on the Materials Project [94] database bond lengths
already used dedicated routines designed to determine fitting initial ILD guesses. Details on the
computation of ILDs from the initial guesses can be found in appendix B. [11, 92]
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Figure 3.42: Formal schematic depiction of the DFT-integratedML scheme as an iterative procedure. The
green colored fields represent decision fields. Cylinder-shaped fields represent stored, pre-
dicted, or handled data. As soon as sufficient data has been accumulated to train a model
that outperforms the guessing method, this trained initial model represents the starting
point of the iterative DFT-integrated ML scheme. Figure adapted from [55].
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While the posterior analysis, based on the ML models test MAE values, yields promising in-
sights regarding the relatively improved predicted input quantities compared to the initial guessing
method. This posterior approach again assumes that the predicted ILDs and magnetic moments
do not affect other calculation setup parameters and that the results from different DFT-integrated
ML iterations do not exhibit systematic deviations when compared.Switch From

Test Score
Analysis to
Comparing

Inputs &
Outputs

However, it is also possible to
compute the MAE of each input quantity prediction, which resulted from a successfully executed
Create-Magnetic-Film workflow, compared to the relaxation results obtained from the successful
ab initio workflows. This MAE is in the following referred to as the actual prediction MAE. The ac-
tual prediction MAE is displayed together with the test MAE for the different DFT-integrated ML
iterations for both the ILDs and magnetic layer moments in Figure 3.43.

Figure 3.43: Posterior depiction of both the model’s test MAE values, depicted as continuous lines, as
already seen in Figure 3.35, and the MAE arising from the difference of the predicted ILDs
(left) and the predicted magnetic moments (right) compared to the DFT results, depicted as
dashed lines. This figure is adapted from [55].

From Figure 3.43, it can be seen that the testMAE values are systematically smaller than their
predictionMAE value counterparts. Still, for the ILD predictions, the largestMAE is 50 % smaller than
the corresponding initial ILD guess MAE. For the magnetic moment’s predictions, the largest MAE
remains over 60 % smaller than the constant initial guess MAE.Actual Input

Improvement of
at Least 50 % for

the ILDs & at
Least 60 % for

the Magnetic
Moments

Increasing values for the prediction
MAE for the last DFT-integratedML iteration indicate that the magneticmoments are more complex
to model for the films, which were still present in this final iteration. This is a similar effect observed
in Figure 3.40 for the increasing number of relaxation and SCF iteration steps. Furthermore, for the
DFT-integrated ML step for which the magnetic layer moments and the ILDs have been optimized si-
multaneously for the first time, anMAEminimum is observed for the magnetic layer moments MAE
depiction is visible. This could be interpreted in the sense that a large proportion of the systems
relaxed in this particular iteration acquired magnetic moments and were close to the ML-modeled
moments. Again, this indicates that optimizing both the structure and the magnetic layer moments
simultaneously was crucial for both the improved convergence rate and the reduced number of re-
quired iterations. Modeling both structural and magnetic film properties simultaneously enabled
the relaxed film properties to be approximately matched best using the ML predictions before com-
puting the particular structure.
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For the ILD predictions, the MAE values show only slight variations over increasing numbers
of DFT-integrated ML iterations. A potential explanation for the fact that the test MAE values are lo-
cated systematically below the actual prediction MAE values is that the different DFT-integrated ML
iterations—as already observed—do not equally well sample the phase space of not yet successfully
relaxed structures and are systematically different from each other. The following examineswhether
there is a systematic difference between the different DFT-integrated ML iterations present. Sum-
marizing the findings about the prediction improvement, it can be said that the posterior analysis
revealed that the MAE of the actual prediction is increased compared to the test MAE. However, a
50 % to 60 % improvement of the predicted input quantities in comparison to the initial guesses
is achieved, and the actual prediction MAE serves as a more realistic estimation for the predictive
performance of this model than the prior test MAE values. Additionally, the observation that a 17 %
speedup of the ab initio calculations could be achieved by ML optimizing the magnetic moment in-
puts together with the ILD inputs is remarkable. It serves as a promising proof of concept for the
DFT-integrated ML methodology.

Batch Independence

Examining the systematic differences between the DFT-integrated ML iterations, i.e. the batches of
this particular batch learning application, can be done by comparing the deviations of the model’s
predictions to the DFT relaxation outcome. This would reveal if any of the DFT-integrated ML itera-
tions stands out amongst Examination of

Systematic
Deviations
Between Batches

the others or if there are trends visible like e.g. progressively increasing or
decreasing deviations of predicted input quantities and the properties resulting from the relaxation
or spread thereof. For the ILDs, the distribution of deviations of the ILDs 𝛥𝑑𝑋𝑌 which are defined
for arbitrary neighboring layers X and Y as in equation (3.9), is displayed in Figure 3.44.

𝛥𝑑𝑋𝑌 = 𝑑DFT
𝑋𝑌 − 𝑑Pred

𝑋𝑌 (3.9)

From Figure 3.44, it can be seen that in particular for the ILD 𝑑𝐵𝐶 , there is a comparably significant
deviation of the predictions from the DFT results present. For the other ILDs, no apparent large
deviations from the value of 0 Å are visible, representing the desirable value regarding residuals
of the predicted values and the DFT-based ground truth. Discussion of

Predictions
Residuals as
Measure of
Systematic
Deviations

For each ILD it is apparent that for data
batches for which the inputs ILDs are represented by the initial average bond length-based guess
(𝑛DFT IntML

Iter ≤ 1), a large spread of residuals can be observed compared to the following DFT-
integrated ML iterations.

Beyond the spread, the initial guess seems to overestimate the ILDs across all three magnetic
layers systematically. At the same time, the ML-based predictions are far more centered around
the value of 0 , indicating nearly vanishing residuals. Also, as already previously observed (like e.g.
in Table 3.20, Figure 3.43, and Figure 3.35), the spread is decreased for the residuals of the ILD
between the magnetic C layer and the substrate, compared to the other ILDs. This indicates the
reduced modeling complexity of this particular ILD (𝑑𝐶𝑆𝑢𝑏) compared to both others.
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Figure 3.44: Depiction of the distribution of the difference of input and relaxed ILDs for each DFT-
integrated ML iteration. Inside the colored boxes, the dark lines represent the median val-
ues. The white circle markers represent the mean values.

Figure 3.45 shows the differences between the input magnetic layer moments and the ab
initio results. The sign convention chosen here is analogous to equation (3.9). From Figure 3.45, it
can be seen that for the magnetic moments of the magnetic layers, A and B, the magnetic moment
distribution spread, denoted by the whiskers, decreases for iterations applying the DFT-integrated
ML procedure. For all magnetic moment layers, the median residual values are situated closely to
the value of 0 𝜇𝐵. The spread decrease observed for the A and B magnetic layer moments seems
reversed for the magnetic C layer.Indirect

Consequences of
ML Optimized

Structures in the
FLAPW Film

Setup

The outliers are significantly more prominent for the magnetic
layer moments residuals than in the ILD residual depiction. Combining the observations gathered
from both Figures 3.44 and 3.45, it can be concluded that fewer systematic deviations are present
for themagnetic layermoment residuals. However, this can be explained by revisiting the previously
mentioned assumption about the independence of calculation setup parameters.
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Figure 3.45: Depiction of the distribution of the difference of predicted and converged magnetic layer
moments, obtained from the relaxed film structures ab initio results, for eachDFT-integrated
ML iteration. Inside the colored boxes, the dark lines represent the median values. The
white circle markers represent the mean values.

The film setup is entirely performed from scratch as the structural setup is altered using the
ML-predicted ILDs. Hence, during the setup, the muffin-tin radii were recomputed by the FLEUR in-
put generator. The change of the muffin-tin radii subsequently changes the forces computed, which
are acting on the atoms and changing their positions during the relaxation. This is not true for LAPW
calculations with considerably more dedicated convergence parameter choices. However, choosing
such convergence parameters in high-throughput settings is not feasible due to the attached in-
creased computation cost. Therefore, the changed ILDs can slightly alter the muffin-tin radii, which
impacts the relaxed structure. This co-dependence of the relaxation outcome on the altered struc-
tural and muffin-tin setup also potentially explains the observed (see Figure 3.40) substantially dif-
ferent development—for increasing DFT-integrated ML iteration numbers—of the required number
of relaxation steps to:

1. reach the maximum absolute force convergence criterion of 10−3 Ha
𝑎0

2. reach the maximum absolute force convergence criterion of 10−5 Ha
𝑎0
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It is possible that without the results shifting impact of the predicted input structures, the
structural input optimization using DFT-integrated ML could reduce the actual prediction MAE even
further. This could also lower the number of required relaxation steps to reach a completely relaxed
structure—even applying a similarly strict convergence criterion— also for increasing iteration num-
bers of DFT-integratedML. The reason the number of required relaxation steps to achieve completely
relaxed film structures is increasing as more structures—also including such that converged using
ML optimized input structures—have been learned is related to the data homogeneity of the struc-
tural setups (including e.g. ILDs and muffin-tin sphere radii), which at first is very high, as the subset
of potential ILD guesses is very small and hence also the subset of elemental muffin-tin radii is more
homogeneous. However, as the data fraction of structures relaxed using ML-optimized structural
inputs increases, homogeneity gradually decreases. This is because the model is not aware of the
systematic peculiarities of different DFT-integrated ML iterations, such as the structure-dependent
muffin-tin radii used in the setup.Different Trends

in Relaxation
Step Curves

Explainable by
Altered

Muffin-Tin Radii

In fact, the model suggested relaxed ILDs may deviate slightly
from the real relaxed ILDs in further DFT-integrated ML iterations. This is due to the predictions
being compiled by models that have been trained on data originating from multiple different DFT-
integrated ML iterations. As a result, the slight systematic residual relaxed ILD deviations emerging
from the altered muffin-tin radii remain unaccounted for. There are two possible solutions to over-
come this challenge. These changes can be accounted for by manually setting constituent element-
specific muffin-tin radii across all DFT-integrated ML steps of a project. Alternatively, a relaxation
method that does not incorporate the concept of muffin-tin spheres in the structural setup can be
used. Implementing either of these solutions can potentially achieve a further decrease in required
relaxation steps, making the methodology of DFT-integrated ML more effective for future studies.

3.3.4 Explainable Artificial Intelligence

Beyond examining the ML model’s predictions and residuals, it is possible to explore the marginal
feature impacts on the predicted quantities of the used models using the SHAP [128] package for
global model explanations. However, rather than examining the SHAP summary plot of each model
individually in the following, a comparative approach is discussed. The average absolute SHAP values
corresponding to the used features for each predicted quantity are displayed in Figure 3.46.Examination of

Average SHAP
Value

Magnitudes of
Retrained
Prediction

Models

This vi-
sualizationwas compiled in a posterior analysis by retraining themodels used for the predictivemod-
eling process on the entire available data set after a brief evaluation. It should be mentioned that
the evaluation of the retrained models, for which the average SHAP value magnitudes are shown in
Figure 3.46, yielded similar test MAE values as already presented in Figure 3.35 previously. Further-
more, the computed coefficient of determination on the test set of the models—before retraining
on the entire available data—was calculated to be larger than 0.98 for the ILD predictionmodels and
larger than 0.85 for the magnetic layer moments. Hence, it is clear that the ILDs can nearly perfectly
be modeled using only the four atomic numbers.

This is not the case for the magnetic layer moments, as by the interpretation of 𝑅2, up to
around 15 % of the magnetic layer moments variation can not be accounted for using the trained
model. However, a few candidates for additional features could increase the coefficient determina-
tion for the magnetic layer moments, including the structure and the muffin-tin radii.
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Figure 3.46: Depiction of the average magnitudes of the SHAP values obtained using the same models
as were used for the DFT-integratedML procedure of each input feature and each predicted
quantity. The models used to compute the SHAP values, which this depiction is based on,
have been trained using all successfully relaxed structures available after 5 DFT-integrated
ML iterations.

From Figure 3.46 it can be seen that for all predicted quantities, the specific film layer site’s
atomic numbers, which can be considered the closest related to the particular predicted quantity,
have the most significant impact on the predicted quantity. For the magnetic layer moments, this
concludes that the element situated at the moment for which the magnetic moment is predicted
has the most absolute average impact on the prediction. For the predicted ILDs, this translates to
the atomic numbers of both layers separated by the corresponding predicted ILD having the largest
impact on the ILD prediction. SHAP Value

Magnitudes
Directly
Impacted by
Atomic Number
Features in
Spatial Proximity

This observation of the most impactful features follows the physical
intuition that the material composition in proximity should determine local material properties. A
neighboring degree is defined in the following to examine this intuition further. It< describes in
which order the potential impact of the corresponding input feature on the predicted quantity is by
effectively counting how many ILDs are situated between the layer the feature is associated with
and the next layer, which has the closest proximity possible to the predicted quantity. Using this
definition, the neighboring degree is given in Table 3.22 for each feature and predicted quantity. Neighboring

Degree
Using the definition of the neighboring degree and the average magnitude of SHAP values

presented in Figure 3.46, it is possible to examine the relation between the average impact magni-
tudes of the different features on the different predicted quantities (feature-specific SHAP values)
and the spatial distance of the corresponding feature to the proximity of the predicted quantity in
units of ILDs (neighboring degree). The corresponding depiction is given in Figure 3.47.
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Predicted Quantity 𝑍𝐴 𝑍𝐵 𝑍𝐶 𝑍𝑆𝑢𝑏

𝑚𝐴 0 1 2 3
𝑚𝐵 1 0 1 2
𝑚𝐶 2 1 0 1
𝑑𝐴𝐵 0 0 1 2
𝑑𝐵𝐶 1 0 0 1
𝑑𝐶𝑆𝑢𝑏 2 1 0 0

Table 3.22: Overview of the neighboring degree of the ML model’s input features to the respective pre-
dicted quantities. The numbers given for every predicted quantity and feature pair represent
the neighboring degree.

Figure 3.47: Depiction of the predicted quantity-specific averagemagnitude of SHAP values in relation to
the input features encoded using the corresponding neighboring degree. The neighboring
degree is used as established in Table 3.22. The plot containing the ILDs is shown on the left,
while the plot containing the magnetic layer moments is depicted on the right.

From Figure 3.47 it can be seen that indeed there is a clear trend visible that the average
feature impact magnitude is decreasing for increasing neighbor degrees. The substrate choice sig-
nificantly impacts the ILD 𝑑𝐴𝐵, already visible in 3.46. It is clear that the substrate choice significantly
influences the film’s (electronic) structure simply because the substrate makes up a significant pro-
portion of the film’s unit cell atoms and governs the in-plane lattice constant for themagnetic layers.
The trend for the magnetic moment associated with average SHAP value magnitudes even suggests
an exponentially decreasing behavior with increasing neighboring order.Suggested

Exponential
Decrease of

Average Impact
in Relation to

Increasing
Spatial Proximity

This further supports the
previouslymentioned idea of locality ofmaterials properties, whichwill also be used in the following
section. This application of the SHAP package [128] is a prime example of how XAI can be used to
gain insights about the underlying physics contained in the data, which anMLmodel has learned. As
demonstrated in the next section, a distance-based exponentially decreasing impact on the neigh-
bor’s magnetic properties can be explained using the previously suggested locality assumption.
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3.3.5 Data Analysis

This section presents an in-depth analysis of the collected magnetic data. This discussion covers
the magnetic layer moments, the substrate layer moments, the magnetic states, and the magnetic
inter-layer coupling.

Magnetic Layer Moments

This section discusses the distributions of total magnetic moments of the relaxed films and the mag-
netic moments of the individual magnetic layers. The distribution of the total film moments per
substrate element is depicted in Figure 3.48.

Figure 3.48: Distribution of totalmagnetic filmmoments for each substrate element. The horizontal lines
in the boxes denote the median, while the white circle markers denote the average of the
total film’s magnetic moments.

From Figure 3.48 it can be seen that both elements from group 9 of the periodic table exhibit
lower average total magnetic cell Group 9 Noble

Metal Substrate
Films Exhibit
Smaller Average
Total Magnetic
Moment

moment than the other substrates. Beyond the slight variation in
averages, the distributions of the moments exhibit similar widths. It is worth mentioning that not a
single compound switched the sign of the total moment despite individual negative layer moments
appearing within the data set. This means that the initially givenmagnetic directionwasmaintained,
even after the magnetic moments had been initialized using an ML model. The largest total film’s
magnetic unit cell moment within the data set was determined to be 18.373 𝜇𝐵 for the film struc-
ture Maximum Total

Magnetic
Moment
18.373 𝜇𝐵

MnCoFePd5FeCoMn. Beyond the presented macroscopic overview of the film’s unit cell’s total
magnetic moment, the investigation of the resulting magnetic moment for each magnetic layer is
possible and depicted in Figure 3.49.
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Figure 3.49: Distribution of the magnetic moments situated at the different magnetic layer sites of the
relaxed film structure. The horizontal lines in the boxes denote the median, while the white
circle markers denote the average of the individual layers’ magneticmoments. The A layer’s
magnetic moments distribution is shown on top, the B layer distribution is given below, and
themagneticmoment distribution for the elements of the C layer is displayed at the bottom.
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In Figure 3.49, it can be seen that there are substantial differences in the distributions of the
magnetic moments present for different elements as well as in different layers. At first glance, it
can be seen that in all layers, the largest magnetic moment can unanimously be associated with
the Mn atoms occupying the respective layer and is about 4 𝜇𝐵. Uniformity of

Maximum
Magnetic
Moment for Each
Layer

Additionally, it can be observed
that the average magnetic moment sizes can be arranged as 𝑚𝐴 > 𝑚𝐶 > 𝑚𝐵. Remarkably, in
both the A and the C layers, there are outliers—denoted as black diamonds within the shown box
plots—for iron, occupying the respective layer, very close to a vanishing magnetic moment. This
is also the case for cobalt in the magnetic C layer. This is surprising for these elements, as both
elements are part of the group of inherently FM elements. From the elements that typically do not
exhibit significant magnetic moments in their bulk systems, like Sc, Ti, and V, it can be observed that
both the spread and the average of the magnetic moments do decrease towards the layers situated
farther away from the film’s surface. This reflects how surface effects Surface Effects

Impact
in film systems can enhance

magnetic properties, which are not observed in bulk systems. Additionally, in Figure 3.49, the impact
of alternating moments can also be observed.

A particular observation in this regard is related to the averages of the Cr,Mn, and Femagnetic
moments. The averages are increased in layers A and C while simultaneously suppressed in the
B layer. Inspecting the spread indicated by the whiskers in the box plots in Figure 3.49 of both
the Cr and Fe originating moments, it can be seen that the spread width is precisely opposed to
the respective other element’s moment spread. At the same time, the spread width also displays
an altering behavior for both elements. In the C layer, the average magnetic moments originating
from every element except Cr, Mn, Fe, Co, and Ni are vanishing. Unsurprisingly, the Zn associated
magneticmoment is vanishing for all layers unanimously. AFM Pair

Exchange
Interactions

In fact, both Cr andMn tend to also appear
with a negativemagneticmoment in theA andC layers, indicating that these elements tend to exhibit
AFM pair exchange interactions with other elements from the selection of magnetic layer elements.

Another observation regarding the impact of DFT-integrated ML can be derived from the dis-
tribution of the film’s unit cell’s magnetic moment’s distribution, shown in Figure 3.50. From Fig-
ure 3.50 it can be observed, that even though the initial magnetic moment of 1 𝜇𝐵 per magnetic
layer atom, which has been used—for the magnetic initialization—prior to the use of ML optimized
input parameters, was used, a broad spectrum of total film cell moments including moments above
15 𝜇𝐵 resulted from the initial guess input parameters. For the following DFT-integrated ML iter-
ations, it can be observed that the Strong Resulting

Magnetic
Moments Despite
Relatively Low
Initialization

fraction of non-magnetic or weakly-magnetic relaxed films in-
creased compared to the absence of ML optimized magnetic input moments. Across all iterations
of DFT-integrated ML, the average magnetic moment of a film’s unit cell only exhibits slight varia-
tions, suggesting no systematic discrepancies in the sense that a specificmodel iteration favored the
prediction of either exceedingly large moments or considerably underestimated magnetic moment
configurations. However, there are also systems contained in the data set where magnetic moment
induction amongst the magnetic layer elements occurs, which will be discussed in the following.

Induced Magnetic Moments in Magnetic Layers

Before discussing induced moments within the magnetic layers, it is necessary to clarify Definition of
Induced &
Inducing
Moments

what is con-
sidered an induced magnetic moment. Considering the magnitude of substrate moments—which
by definition are induced by the neighboring magnetic layers—depicted in Figure 3.53, it is safe to
say that most of the induced substrate moments are situated well below 0.4 𝜇𝐵.
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Figure 3.50: Depiction of the film’s unit cell magnetic moments across the different DFT-integrated ML
iterations. The horizontal lines in the boxes denote the median, while the white circle mark-
ers denote the average of the total film’s magnetic moments per the corresponding DFT-
integrated ML iteration.

Hence, in the following, moments of a magnitude smaller than or equal 0.4 𝜇𝐵 are referred
to as induced moments regardless of their corresponding sign. In contrast, moments with a mag-
nitude greater than 0.4 𝜇𝐵 are referred to as inducing magnetic moments. Beyond magnetic and
induced moments, defining the magnetic pair interaction type between two neighboring layers is
necessary. However, when classifying the magnetic pair interaction types, the sign of the neigh-
boring moments is considered to characterize the magnetic interaction of the layers. Generally,
suppose a single-inducing magnetic moment is neighbored by a single-induced magnetic moment.
In that case, the pair interaction type can be determined by simply multiplying both magnetic mo-
ments and examining the sign and magnitude of the result.Pair Interaction

Types
Effectively, if the result of the moment’s

product is zero, the pair interaction type is non-inducing as one of both neighbors is not magnetic
at all. If the result represents a positive number, the pair interaction type is FM, as both neighbors
share the samemagnetic moment direction. However, if the moment’s product is negative, the pair
interaction type is AFM, as the neighboring magnetic moments are antiparallel. This definition is in
line with Figure 2.4. However, given that more than just two film layers are contained within the
examined structure’s magnetic layers, the presented definition is sufficient for determining the in-
teraction type of layers A and C only. This assumes that the actively inducing effect of the substrate
on the magnetic moment of C is negligible. Special treatment is necessary to determine the pair
interaction type of an induced B layer moment, as the layer could be induced by both neighboring
magnetic layers simultaneously.Treatment of an

Induced B Layer
Moment

For simplicity, only such pair interactions have been considered for
the B layer, where the pair interaction type between the layers A and B matches the pair interac-
tion type of the layers B and C. The pseudocode algorithm which was effectively used in order to
determine the pair interaction types, based on the computed magnetic layer moments, is shown in
Algorithm 3.1.
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Algorithm3.1:Classification of inducedmagneticmoments and coupling type determination.
This algorithm has been implemented in the code publication [338].
1 function getpairInteractionType (𝑚𝐴, 𝑚𝐵, 𝑚𝐶);
2 Input :Three floats𝑚𝐴, 𝑚𝐵, and𝑚𝐶
3 Output :Two ints pairIntTypeAB, pairIntTypeAB and & three bools activeA, activeB, activeC
4 cutoff← 0.4 ;
5 if |𝑚𝐴| ≤cutoff & |𝑚𝐵| ≤cutoff & |𝑚𝐶| ≤cutoff then
6 pairIntTypeAB← None ;
7 pairIntTypeAB← None;
8 end if
9 if 𝑚𝐴 ==0 ||𝑚𝐵 ==0 then
10 pairIntTypeAB← None;
11 else
12 if (𝑚𝐴 >0 &𝑚𝐵 <0 ) || (𝑚𝐴 <0 &𝑚𝐵 >0) then
13 pairIntTypeAB← −1;
14 end if
15 if (𝑚𝐴 >0 &𝑚𝐵 >0 ) || (𝑚𝐴 <0 &𝑚𝐵 <0) then
16 pairIntTypeAB← 1;
17 end if
18 end if
19 if 𝑚𝐵 ==0 ||𝑚𝐶 ==0 then
20 pairIntTypeBC← None;
21 else
22 if (𝑚𝐵 >0 &𝑚𝐶 <0 ) || (𝑚𝐵 <0 &𝑚𝐶 >0) then
23 pairIntTypeBC← −1;
24 end if
25 if (𝑚𝐵 >0 &𝑚𝐶 >0 ) || (𝑚𝐵 <0 &𝑚𝐶 <0) then
26 pairIntTypeBC← 1;
27 end if
28 end if
29 if |𝑚𝐴| > cutoff then
30 activeA← True;
31 else
32 activeA← False;
33 end if
34 if |𝑚𝐵| > cutoff then
35 activeB← True;
36 else
37 activeB← False;
38 end if
39 if |𝑚𝐶| > cutoff then
40 activeC← True;
41 else
42 activeC← False;
43 end if
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A few different tasks are performedwithin the shown pseudocode Algorithm 3.1. These tasks
include:

• Filtering film systems, for which no magnetic layer exceeds the set threshold of an induced
magnetic moment (lines 5 to 8)

• Determine the pairwise layer interaction type for the layers A and B, by first checking if ei-
ther layer is non-magnetic (which then are not further considered in this analysis) and then
comparing the signs of the magnetic layer moments (lines 9 to 18)

• Determine the pairwise layer interaction type for layers B and C, by first checking if either layer
is non-magnetic and then comparing the signs of the magnetic layer moments (lines 19 to 28)

• Determine which layers are inducing (active) or display induced magnetic moments (passive)
for all three layers (lines 29 to 43)

Algorithm’s
Capability to

Handle Thinner
Films

The presented pseudocodeAlgorithm3.1 is compatiblewith films forwhich only twomagnetic layers
are present. The reason is that themagneticmoment of layer A, in this case, would have the value of
0 𝜇𝐵 in the extracted data. Hence, such a film is treated as a non-magnetic interaction between the
A and B layers, causing it to be filtered out for the following considerations. However, the interaction
between the B and C layers would be unaffected by this. Of course, there are no pair interactions
with other magnetic layers for a film system with a single magnetic layer, which also causes these
films to be filtered out for the same reason.

After determining the layer-wise pair interaction types, it is possible to relate the interaction
types to the neighboring elements within the layers by counting the number of FM and AFM layer-
wise pair interactions and visualizing the relative count of interactions together with the inducing
and induced elements as in Figure 3.51.

Figure 3.51: Relative count of FM and AFM layerwise pair interaction types for induced (left) and induc-
ing (right) layer elements. This figure explicitly highlights the interaction type for inducing
and induced sites. A magnetic pair interaction type overview without regard to whether an
element is induced or inducing can be found in Figures 3.59, 3.60, and 3.61.
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From Figure 3.51, it can be seen that the elements that typically would be considered non-
magnetic in the bulk system are more likely to have an induced moment than to induce a magnetic
moment. Examples of such elements are Sc, Ti, Cu, and Zn. These elements are comparably more
often represented by induced magnetic moments. Furthermore, the elements that are known ei-
ther for their inherent ferromagnetism, such as Fe and Co, or for the arrangement as AFM [345–347]
ordering structures, such as Mn or Cr, are comparably more often inducing a moment. Surprisingly,
even a few Fe and Co layers are contained within the data set for which the inherent magnetism is
suppressed to the extent that they are considered inducedmoments according to the previously dis-
cussed definitions. Observation of

Elemental
Tendencies to
Gain Induced or
Induce Magnetic
Moments

Unsurprisingly, the typically non-magnetic elements Cu and Zn containing layers
are not inducing a single neighboring magnetic moment as by the definitions previously introduced.
For all induced moments, the AFM pair interaction count is increased compared to the FM count
for all induced elements besides Ni and Cu, while for the inducing layer elements only Ti, V, and Ni
display a magnetic interaction type more often. The depiction in Figure 3.51 can serve as a starting
point for future materials design tasks in search of specific magnetic pair interaction types in films.
As previously discussed, the interaction type is tuneable by the choice of film constituents. There-
fore, knowing themagnetic interaction type can assist in creating an environment or platformwhich
e.g. supports the emergence and stabilization of Skyrmions.

Besides the induced moments in the magnetic layers, there are also induced magnetic mo-
ments in the different substrate layers, which are examined in the following.

Induced Magnetic Substrate Moments

Pd and Pt
Average Total
Induced
Substrate
Magnetic
Moments
Increased

As already seen, some elements are more likely to gain an induced moment than others. To deter-
mine if this observation from the induced magnetic layer elements translates to the substrate layer
elements, the total induced magnetic substrate moments for each substrate element are shown in
Figure 3.52.

Figure 3.52: Depiction of the total substrate moment distribution for each substrate element. The hor-
izontal lines in the boxes denote the median, while the white circle markers indicate the
average of the individual substrate elements’ magnetic moments.
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From Figure 3.52, it can be seen that the average total magnetic substrate moment associ-
ated with the substrate elements Pd and Pt is significantly larger than the corresponding averages
of the other substrate elements. Knowing that the average total film cell magnetic moments are
roughly comparable for the different substrates from Figure 3.48, the observation from Figure 3.52
concludes that both palladium Pd and Pt comparably are either more likely to gain an induced mag-
netic moment than the other substrate elements or these particular elements tend to develop a
magnetic ordering which causes the total moment to cancel out. For the substrate elements Ag,
Ir, and Au, the distributions from Figure 3.52 show vanishing average total magnetic substrate mo-
ments. To determine if the magnetic ordering of Ag, Ir, and Au caused the total induced magnetic
substrate moment to vanish, the induced magnetic moments of the individual substrate layers dis-
tribution for each substrate element needs to be examined and is hence depicted in Figure 3.53.

In the case of Rh, it can be seen from Figure 3.53 that the average substrate magnetic layer
moment is positive in the substrate layer A but negative in substrate layers B and C, contributing
to a smaller average total magnetic substrate moment. Also, for Ir, the average magnetic substrate
moment in layers A and C is positive while at the same time negative in layer B. Hence, it is true
that for Rh and Ir, the magnetic ordering contributes to a reduced element-specific total substrate
moment. However, in the cases of the periodic table group 11 elements Ag and Au, the induced
substrate moment averages indeed vanish for each layer individually for the B and C layer, while the
corresponding average induced moments in the A layer are given by a small positive value. Exam-
ining the spread widths and averages of Pd and Pt-based substrate moments in combination with
Figure 3.52, it can be concluded that both substrates have a tendency for an FM ordering within
the substrate layers rather than an AFM configuration.Average

Magnetic Pd
Substrate C

Layer Moment
Significantly

Increased
Compared to the

Average
Substrate B

Layer Moment

Surprisingly, especially for Pd, it can be seen
from Figure 3.53 that the average induced magnetic substrate moment in the layer A is the largest
moment compared to the other layers for that specific element which seem to be comparably large.
At the same time, by actually looking at the numbers, it turns out that𝑚Pd

𝑆𝑢𝑏𝐴 > 𝑚Pd
𝑆𝑢𝑏𝐶 > 𝑚Pd

𝑆𝑢𝑏𝐵
which is counter-intuitive as it would naively be assumed that the magnitude of the induced mag-
netic moment is decreasing for the substrate layers further away from the next magnetic layer. Fur-
ther examining the average magnitudes of the substrate, layer-specific, induced magnetic moments
for filmswith threemagnetic layers—due to the previously discussed observation for Pd—it could be
observed that the physical intuition that magnetic moments should decrease in magnitude within
the substrate when progressing further into the substrate starting from the magnetic C layer indeed
is not true—as can be seen in Figure 3.54—for both Pd and Pt, even more this assumption is also
not true, when the focus is shifted from the magnetic moment’s magnitude to thePhysical Intuition

Suggests
Decreasing

Induced
Moments

average induced
magnetic substrate moments for only positively oriented (along the 𝑧-axis) FM substrate configura-
tions for Pd and Pt. In the latter case, the induced moment’s progression of Rh looks different from
expected, observing the decreased ratios from substrate layer A to B, comparing it from layer B to
C, and comparing the progression to e.g. the development of the curve for Ag and Au.
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Figure 3.53: Depiction of the induced substrate magnetic moments for the substrate layers A (top), B
(middle), and C (lower) for each substrate element. Depiction of the total substratemoment
distribution for each substrate element. The horizontal lines in the boxes denote themedian,
while the white circle markers indicate the average of the individual substrate elements’
magnetic moments.
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Figure 3.54: Development of the average induced magnetic moment magnitude (top), average induced
magneticmoment for FM (as per algorithm3.2) substrate orientations (middle), and average
inducedmagneticmoment for FM (as per algorithm 3.2) substrate orientationswith positive
moment direction (lower) for each substrate element and substrate layer.
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From Figure 3.54, it is apparent that both Pd and Pt represent significant deviations from the
previously discussed intuition that the average magnitudes of the induced magnetic substrate mo-
ments should decrease towards the film’s center for each of the three different cases. Also Pt Deviates

From the
Physical Intuition

Examining
those outliers and considering the observed effects emerge in a symmetric magnetic multilayer film
setting, it is possible to explain this finding using the quantum confinement effect. [348] The finite
film thickness forces the wave function to fulfill conditions with regard to the wave function wave-
length. A special case of the quantum confinement effect is the quantum well, in which the elec-
tronic states are restricted to two dimensions instead of three. In a quantumwell, states exist within
a potential bordered at the edges of the quantumwell by a higher potential, limiting the states’ prob-
ability distribution to the space within the quantum well. In this case of symmetric multilayer films
on a substrate, the boundaries of the quantum well would directly result from the limited total film
thickness and potentially are also determined by the substrate’s thickness. The individual quantum
well states are affected by spin-polarization inequivalently. This can lead to different manifestations,
including the occurrence of magnetic moment oscillations, in different element substrates. Know-
ing the substrate elements DOS, as presented in appendix D, it is clear that both Ag and Au have
filled 𝑑 states well below the Fermi level. Hence, the induced spin-polarization of these 𝑑 states
would not contribute to the magnetization and the induced moment. Furthermore, the DOS for
these elements only has 𝑠 states around the Fermi level, having a smaller induced magnetization
and reduced overall DOS. Hence, according to the Stoner criterion Stoner Criterion[349, 350], which includes the
consequence that a large DOS around the Fermi level benefits the emergence of ferromagnetism, it
is apparent that Ag and Au, due to the fact that a larger DOS facilitates a larger response, will likely
not exhibit significant magnetic spin-splitting. While for the Rh and Ir substrates, the 𝑑 states are
not found exclusively below the Fermi energy, the largest DOS of these elements is not found in
close proximity to the Fermi level. However, for Pt, there is a DOS peak found relatively close to
the Fermi level, indicating that a magnetic spin-splitting would be energetically more favored than
fore previously discussed elements. In the case of Pd, the DOS peak close to the Fermi energy is
the largest peak in the presented DOS. It has also been reported that bulk fcc Pd nearly meets the
Stoner criterion [351–354] and hence is close to exhibiting ferromagnetism. While bulk Pd does not
show FM behavior, quantum well states can cause the DOS to oscillate within the substrate layers,
eventually leading to emerging magnetic ordering in the substrate. [352]

Quantum Well
States in Thin
Film Systems

Quantumwell states were previously observed for thin multilayer film systems [355] and also
reported [352, 356, 357] to cause periodicity of the FM emerging in Pd thin film systems. However,
at the time of writing, no study reports that there seems to exist an observable transition from
extensive quantum well manifestation in Pd films over a reduced manifestation in Pt-based films to
no apparent inducedmoment oscillation in Ag and Au thin filmswithin the fcc noblemetal group has
been found in the literature. To describe the observed behavior first, in the following, the relation
between the different induced magnetic substrate moments is shown in Figure 3.55.

FromFigure 3.55, it can be seen that the relation between𝑚𝑆𝑢𝑏𝐵 and𝑚𝑆𝑢𝑏𝐶 is indeed clearly
of a linear type, while the relation between𝑚𝑆𝑢𝑏𝐵 and𝑚𝑆𝑢𝑏𝐴 is exhibiting a positive correlation it
does not display linearity to that extent than the relation between𝑚𝑆𝑢𝑏𝐵 and𝑚𝑆𝑢𝑏𝐶 . However, in
the case of𝑚𝑆𝑢𝑏𝐵 and𝑚𝑆𝑢𝑏𝐴, the induced moment of the substrate layer A is mainly governed by
the moment induced from the magnetic C layer rather than stemming from an interaction between
the substrate layers such as the relation between𝑚𝑆𝑢𝑏𝐵 and𝑚𝑆𝑢𝑏𝐶 , as the substrate C layer is only
neighbored by the substrate B layer elements.
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Figure 3.55: Scatter plot of the relation of the different neighboring magnetic induced substrate mo-
ments. The left depiction shows the relation between 𝑚𝑆𝑢𝑏𝐵 to 𝑚𝑆𝑢𝑏𝐴, and the right de-
piction shows the relation between𝑚𝑆𝑢𝑏𝐶 to𝑚𝑆𝑢𝑏𝐵.

Based on that observation, it is safe to assume that the magnetic moments of the substrate
are a rather local phenomenon, as discussed previously in this section.Induced

Magnetic
Substrate

Moments as
Linear Response

This can be formalized, using
a linear-response approach, in a sense that the induced moment of the substrate layer 𝑙 of a—at
first—non-symmetric film (as depicted in Figure 3.33), while 𝑙 represents the number of layers—as
a measure of distance—to the next magnetic layer, is solely determined by the external magnetic
field at the corresponding layer position𝐵𝑙

ex. Themagnetic field𝐵𝑙
ex at the layer 𝑙 is an external field

in the sense that it is itself stemming from the inducing neighbor layer 𝑙 − 1. At first, it is possible to
relate the magnetic susceptibility 𝜒 to the local external magnetic field, as in equation (3.10). This
expression can be concluded knowing that the presentmagnetic field is related to themagnetization
by the magnetic susceptibility 𝜒 as it holds𝑚 = 𝜒𝐵.

𝑚𝑙 ≈ 𝜒𝐵𝑙
ex (3.10)

As the expression from equation (3.10) can be extended to the next nearest neighbor to the sub-
strate layer 𝑙, equation (3.11) results. However, this assumes the locality of the magnetic moments.
Locality in this context means that each magnetic moment induces a magnetic field only in the near-
est neighboring layers but not in the next nearest neighbors.

𝑚𝑙 ≈ 𝜒2𝐵𝑙−1
ex 𝑚𝑙−1 (3.11)

The observation from the equations (3.10) and 3.11 is that this particular linear response approach
can be performed inductively. Hence, the equations (3.10) and 3.11 generalize as shown in equation
(3.12), where the induced magnetic moment of layer 𝑙 is related to the magnetic moment for layer
𝑗, which is located more close to a magnetic layer but still within the substrate.

𝑚𝑙 ≈ 𝜒𝑙−𝑗+1𝑚𝑗 (3.12)

Now, assuming that the layer 𝑗 represents the firstmagnetic layer outside the substrate (the C layer in
this case), equation (3.12) can be expressed as equation (3.13). This equation also relates the layers 𝑙
and themagnetic layer C by their corresponding spatial distance 𝑑𝑙,MagC using an exponential ansatz
with 𝑎 and 𝑏 to be fitted to the individual previously presented data.Exponential

Ansatz
𝑚𝑙 ≈ 𝜒𝑙𝜒𝑚𝐶 = 𝑎𝑒−𝑏𝑑𝑙,MagC (3.13)
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Now, considering the symmetry of the examined multilayer film systems and hence including the
fact that the magnetic moment is induced into the substrate from both sides of the substrate this
ansatz can be expanded. Using the Film’s

Symmetry
An expression for the magnetic moment in layer 𝑙, as given in equation

(3.14), with the distances 𝑑MagC↑ and 𝑑𝑙,MagC↓ denoting the distance from the substrate layer 𝑙 to
the magnetic layer located above (MagC ↑) and below (MagC ↓) the selected substrate layer 𝑙 can
be formulated.

𝑚𝑙 ≈ 𝑎 (𝑒−𝑏𝑑𝑙,MagC↑ + 𝑒−𝑏𝑑𝑙,MagC↓) (3.14)

The expression presented in equation (3.14) is completely sufficient to model the average magni-
tude of the induced magnetic substrate moments of Ag, Au, Rh, and Ir almost perfectly. Average

Magnitudes of
Induced
Moments Well
Described for Ag,
Au, Rh, and Ir

However,
the expression from equation (3.14) fails tomodel the development of the averagemagnitude of the
induced magnetic substrate moments for both Pd and Pt. Some oscillation occurs for the substrate
elements originating from group 10 of the periodic table. From the publication [358] it was observ-
able that the film’s center layer—for quantum well oscillations—typically represents an extremum
of the induced magnetic moment. Hence, it was decided to extend the ansatz presented previously
by an oscillating cosine contribution, Including

Oscillating
Contribution

with the additional fitting parameters 𝑐 and 𝜔 introduced. This
approach is depicted in equation (3.15) and shifts the ansatz to be centered in line with the center
of the substrate. Here, 𝑧 denotes the spatial deviation from the substrate center—with𝐷 denoting
the total thickness of the examined film—in either direction along the 𝑧-axis.

𝑚(𝑧) ≈ 𝑎 (𝑒−𝑏(𝑧− 𝐷
2 ) + 𝑒−𝑏(𝑧+ 𝐷

2 )) (1 + 𝑐 cos (𝑧𝜔)) (3.15)

It is found that using the expression from equation (3.15) does not only fit the average magnitudes
of the magnetic induced substrate magnetic nearly perfectly for Pd and Pt, but also improved the
already very good fits achieved using the expression from equation (3.14) for the substrate elements
Ag, Au, Rh, and Ir, indicating that, while there is no apparent oscillation taking place, there might
be small quantum well-originated contributions contained in the averaged data, despite that the
contribution is far less significant than the quantum well effects visible in Pd and Pt films induced
magnetic moment averages. Considering the different DOS of the substrate elements, which can be
seen in appendix D, the observed properties of the electronic structure-related induced magnetic
moment oscillations are expected to be distinct amongst the substrate elements as previously dis-
cussed. The results of the corresponding fits are shown in Figure 3.56 in a rearrangement of the
data displayed in Figure 3.54.
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Figure 3.56: Depiction of the symmetrized data, depicted in Figure 3.54, including the corresponding fit
function fromequation (3.15), which describes the inducedmagneticmoment development
inside the substrate. The fit functions are displayed from the position of the uppermagnetic
C layer to the position of the lower magnetic C layer.
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In fact, from Figure 3.56, it can be seen that the chosen ansatz indeed models the induced
magnetic substrate moments exceptionally well in all three examined data subsets. For the posi-
tively oriented FM configurations, the average moments of Rh Rh Displays

Oscillation
Adverse to Pd
and Pt

depicts the previously mentioned
remarkable behavior, which—in the depiction of Figure 3.56—turns out to be the exact opposite ef-
fect as displayed by Pd substrates which can be described by using a different sign, for the Rh-based
substrates, of the fitted parameter 𝑐 than used for the fitting of the Pd curve. Upon examination of
the induced Rh substratemoments, it was observed that Rh does exhibit AFM coupling for some film
configurations, which has been previously reported [359] to be related to Rh thickness and neighbor-
ing layer elements dependent interlayer exchange coupling. Notably, this Rh specific observation is
averaged out as the examination is not restricted to a ferromagnetic ordering of the magnetic layer
elements. This demonstrates that the fit function from equation (3.15) can describe the oscillations
of the average induced substrate moment for the very different data subset representations.
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Resulting Magnetic Configurations

After discussing magnetic interaction types on a neighboring layer type basis, this section examines
the magnetic ordering of the magnetic layers beyond the pair interactions. However, similarly to
the pair interaction discussion, at first it is necessary to define what constitutes a FM, AFM, ferri-
magnetic, and non-magnetic configuration.Clarification of

Definitions for
Magnetic

Configuration
Types

For simplicity, the used definition’s of the previously
mentioned magnetic states configurations are briefly summarized in the following:

• In a FM configuration all three magnetic layer moments are parallel with the same sign of the
magnetic moments

• In an AFM configuration the magnetic layer moments have altering sings—under vertical pro-
gression through the magnetic layers—attached to the magnetic moments

• Non-magnetic film systems are characterized by the fact that all magnetic moments magni-
tudes are situated below a threshold of 0.4 𝜇𝐵

• In a ferrimagnetic configuration the sum of absolute moments is exceeding the sum of the
moments, which translates to the fact that any magnetic layer moment could be negative,
without restricting to alternating signs of the moments, hence excluding such states which
could otherwise be classified as AFM

These brief definitions can be found in the form of a pseudocode algorithm in Algorithm 3.2.

Algorithm 3.2:Magnetic state determination algorithm for the moment’s orientation of the
magnetic film layers. This algorithm’s implementation [338] considers film systems with only
two and a single magnetic moment layer to be present, respectively. The presented pseu-
docode algorithm can easily be expanded to those cases.

1 function getMagneticState (𝑚𝐴, 𝑚𝐵, 𝑚𝐶);
2 Input :Three floats𝑚𝐴, 𝑚𝐵, and𝑚𝐶
3 Output :String magneticState
4 cutoff ←0.4;
5 if |𝑚𝐴| < cutoff & |𝑚𝐵| < cutoff & |𝑚𝐶| < cutoff then
6 magneticState ←”Non-Magnetic”;
7 else
8 if (𝑚𝐴 < cutoff &𝑚𝐵 < cutoff &𝑚𝐶 < cutoff) || (𝑚𝐴 > cutoff &𝑚𝐵 > cutoff &𝑚𝐶 >

cutoff) then
9 magneticState ←”Ferromagnetic”;

10 else
11 if (𝑚𝐴 < 0 &𝑚𝐵 > 0 &𝑚𝐶 < 0 ) || (𝑚𝐴 > 0 &𝑚𝐵 < 0 &𝑚𝐶 > 0) then
12 magneticState ←”Anti-Ferromagnetic”;
13 else
14 if |𝑚𝐴| + |𝑚𝐵| + |𝑚𝑐| < 𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 then
15 magneticState ←”Ferrimagnetic”;
16 end if
17 end if
18 end if
19 end if
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Using Algorithm 3.2 to discriminate the different magnetic configurations emerging from the
relaxed magnetic multilayer structures computed during this project and comparing the relative
counts of the corresponding magnetic states for different iterations of DFT-integrated ML leads to
the depiction in Figure 3.57.

Figure 3.57: Overview over the magnetic configurations which successfully relaxed throughout different
iterations of DFT-integrated ML. Each vertical column represents the entire relative distribu-
tion of the different DFT-integrated ML iterations.

Surprisingly, it is apparent that even though in the initial setup, no other magnetic configura-
tions than ferromagnetismwere set up as input of the Create-Magnetic-Filmworkflow, over 35 % of
resulting magnetic configurations are not of the FM type. Initially FM

Inputs Resulted
in Over 35 %
Non-FM
Configurations

Furthermore, in each DFT-integrated ML
iteration, all types of magnetic configurations are indeed present. However, examining the correla-
tion between obtained relaxedmagnetic configurations and theML-suggestedmagnetic input states
is not possible by the depiction in Figure 3.57. To examine the transitions from the ML-predicted
magnetic moment configurations to the resulting magnetic states, the transition matrix shown in
Figure 3.58 has been prepared.
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Figure 3.58: Transition matrix depiction the classification of the ML predicted magnetic states and the
ab initio resulted magnetic configurations based on the classification presented in Algo-
rithm 3.2.

Within Figure 3.58 all ML-based input moment predictions—across all DFT-integrated ML it-
erations, as the transition ratios for the initial setup can be derived from Figure 3.57—and the cor-
responding magnetic state classification emerging from Algorithm 3.2 has been compared to the ab
initio resulting magnetic configurations, which also have been classified using the same algorithm.
From Figure 3.58 it is found that over 75 % of the magnetic75 % in

ML-Based
Prediction of the

Magnetic
Configuration

configurations, which result from the ab
initio computations, have been correctly predicted using DFT-integratedML, despite the MLmodels
only learned to predict individual magnetic moments independently rather than taking the bigger
picture into account to predict or consider the resulting magnetic state.

Setting the cutoff introduced inAlgorithm3.1 to 0 𝜇𝐵 andmodifying the very samealgorithm—
for which the modified algorithm is displayed in appendix E—to also return a layer-wise pair interac-
tion type (encoded as the integer 0) for the case in which either layer has a vanishing magnetic layer
moment allows for a detailed insight into the relations between neighboring elemental layers and
their respective interaction types. The heatmap depicting the FM interaction type counts for the A
and B, as well as the B and C layer pairs, is shown in Figure 3.59. From Figure 3.59, it is apparent
that the majority of FM interaction types are expectedly centered around the elements Mn, Fe, Co,
and Ni and combinations amongst thereof. However, also Sc-Sc, Zn-Cu, and Sc-Zn pairs exhibit some
degree of FM interaction according toFM Interaction

Pairs
Figure 3.59, while it should be noted that, given the elements

involved in these combinations, the resulting magnetic moments magnitudes are likely not going to
be large. In fact, in the B and C layer pairs, Cu, typically considered an element that does not exhibit
strong magnetic properties, seems to strongly favor an FM interaction type with most of the other
elements. The corresponding counts for the AFM interaction type are shown in Figure 3.60.
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Figure 3.59: Heatmap of the pair interaction counts for the FM interaction type for the A and B layer pairs
(top) and the B and C layer pairs (lower) resolved for the different elemental pairs. White
square fields denote that such an interaction type is missing in the data set.

From Figure 3.60, it can be seen that a few elements tend to form AFM interaction types such
as Zn, Ti, and Sc in both considered layer pairs. Elements

Tendency to
AFM
Orientations

Particularly, Zn tends to especially form AFM types
of interactions combined with layers consisting of Mn, Fe, and Co. It is also clear that Figure 3.60
misses all the elemental combinations that were contained in 3.59, displaying a significant tendency
towards an FM pair interaction. A similar depiction containing the interactions for which either of
the neighboring magnetic layer moments has the value of 0 𝜇𝐵 is shown in Figure 3.61.

From Figure 3.61, it can be seen that for the A and B layer pairs, mainly the combinations of
such pairs containing Zn, Cu, and Ni Combinations of

Typically
Non-Magnetic
Elements Result
in Vanishing
Magnetism

in the A layer exhibit vanishing magnetic moments. Of course,
a typically non-magnetic layer on the outer side of the film paired with an element incapable of
inducing a moment into the element of the outer layer results in an interaction type of vanishing
magnetism. However, in that sense, the B and C layer non-magnetic pair interactions are more
surprising in this regard. Between layers B and C, vanishing moments of some sort seem to occur
very frequently as 3𝑑 elements with relatively small atomic numbers, such as Ti, V, and Cr neighbor
each other.
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This particular overview of pair interaction types—including the non-magnetic type—might
be useful in the future (similarly as the discussion around the depiction of the FM and AFM induced
moment types ratios from Figure 3.51) when a selection of materials is made to achieve a specific
combination of magnetic interaction types.

Figure 3.60: Heatmap of the pair interaction counts for the AFM interaction type for the A and B layer
pairs (top) and the B and C layer pairs (lower) resolved for the different elemental pairs.
White square fields denote that such an interaction type is missing in the data set.
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Figure 3.61: Heatmap of the pair interaction counts for the non-magnetic interaction type for the A and
B layer pairs (top) and the B and C layer pairs (lower) resolved for the different elemental
pairs. White square fields denote that such an interaction type is missing in the data set.
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Chapter 4
Summary & Outlook

In this thesis, a plurality of examples were examined in which data analytics methods and ML mod-
els add value to existing materials’ science data and assist in the data collection process within
a high-throughput setting. The different peculiarities associated with the corresponding data for
each outlined modeling goal have been discussed in each of the presented examples. It has been
illustrated how a materials screening problem associated with desirable material properties and
property quantities could be approached. The power of ML methods lies in their ability to uncover
meaningful relationships within data without the need for carefully tailored problem-specific mod-
els. Instead, machine learning methods rely on versatile, statistically well-founded frameworks, and
learning algorithms that can adapt to new data sets. This approach has already begun to define
the fourth scientific paradigm of data-driven science. However, contrary to popular belief, it was
demonstrated across all projects engaged during this thesis that ML models complement the other
scientific paradigms instead of replacing them. ML models allow for an alternative approach to a
problem, as seen with modeling the critical temperature 𝑇𝑐 for Heusler compounds. They can also
assist in solving problems that traditionally are difficult to engage by using existing methods. An
example of such a problem is the optimization of ab initio input parameters in a high-throughput
context. By integrating ML models for the input parameter optimization into the workflow of a
high-throughput DFT study, it was possible to successfully relax 45.5 % more film structures than
without the use ofMLmodels. This highlights the potential of combining established computational
techniques with ML methods to improve performance and efficiency.

Determining the critical temperature of magnetic materials is a complex multistep process
crucial for their design with practical applications in magnetic devices under operating conditions
in mind. This material property essentially governs whether a material can maintain stable mag-
netism at room temperature conditions. During this project, an ensemble MLmodel was trained on
DFT- and MC-based data of magnetic Heusler alloys achieving a classification test accuracy of up to
94 %, relying solely on the non-magnetic properties of the compounds as features. These features
are available to researchers before an ab initio calculation is performed. Hence, this model would
be well-suited for large-scale materials screening applications in the future, with a false negative
classification rate on a test set of around 10 %, to explore further material properties of the class
of Heusler alloys. Including magnetic—DFT-originated—information about the alloys, allowed to ac-
count for 85 % of the critical temperature’s variance, using an ML regression model, for this typical
materials science-sized data set of 408 structures.
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Using themodels, which achieved the outlined results, to explain theMLmodel learned relations us-
ing state-of-the-art XAI, itwas possible to recover from themodel’s that themagnetic—ormagnetism-
associated—material properties had the most significant impact on the model’s prediction. Hence,
for either the prediction of 𝑇𝑐 or—the classification—if a particular compound either has the mate-
rial property of a critical temperature well above room temperature or not, this validates the phys-
ical intuition. Beyond applying the trained models in a materials screening application, it would be
imaginable and desirable to extend the presented work to predict the critical temperatures of other
material classes besides the Heusler alloys.

While the critical temperature itself is essential to the practical usability of a magnetic ma-
terial, dedicated applications, such as spintronics-based data storage devices such as the MRAM,
require the combination of multiple desirable material properties such as e.g. thermal magnetic
stability and half-metallicity. Hence, as a next step within this project, the property of the spin-
polarization at the Fermi level in full and inverse Heusler alloys was examined. Using existing data
collected by collaborators to train, tune, and evaluate ensemble classification models, it was possi-
ble to successfully predict near half-metallicity for Heusler compounds (L21 Co2HfIn, XA Mn2TaGe,
and L21 Co2ScSn) for which this property was previously unpublished. For these predictions, pub-
licly available ab initio-based structural and magnetic screening data—with an initial data amount
of 4394 structures—has been systematically screened. In addition, the compounds that were clas-
sified to exhibit (near) half-metallicity by the ML classification model were further confirmed to be
indeed (nearly) half-metallic through the application of FLAPW first-principles electronic structure
calculations, thereby supporting the ML model’s predictions. This resulted in a prediction precision
of about 80 % using the Materials Project magnetic and structure data in the screening process.
Furthermore, it was possible to partly observe that the ML model appears to have learned the phys-
ically established Slater-Pauling behavior. The known Slater-Pauling behavior itself would have cor-
rectly classified 7 structures amongst the 49 correctly ML predicted compounds, as such, with a
significantly polarized DOS, as outlined in this thesis. This again emphasizes that ML models com-
plement established physical models and known analytical relations to expand our knowledge of
material properties further. This work could be continued by using the trained model for database
screening—other than theMaterials Project—to extend the number of screened Heusler structures.
Furthermore, a generalization—requiring a significant extension of the training data set—of the pre-
sented approach to e.g. disordered Heusler, doted Heusler alloys, or half-Heusler alloys, such as in
the previous 𝑇𝑐 study would be possible. This would allow for combining both outlined Heusler-
related projects, as it would be possible to screen for half-metallicity and room-temperature stable
magnetism simultaneously and, therefore, extract the most promising material candidates for more
detailed studies. Beyond Heusler alloys, an application of the presented methodology to other ma-
terial classes would be imaginable.
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The final project of this thesis aimed for a systematic high-throughput first-principles screen-
ing of symmetric thin magneticmultilayer film systems, which are theoretically well-known to repre-
sent tuneable host systems for room temperature stable Skyrmions, consisting of three layers of 3𝑑
transition metal elements on each side of a five atom layer thick fcc noble metal substrate. Within
this study, due to the described setup, a phase space of 6660 possible film structures—also allowing
film systems with only two and one magnetic layers on each side of the substrate layers—emerged.
This large-scale, high-throughput study aimed first for the relaxation of the initialized structure—
whichwas set up using average database bond length guesses for the ILDs and a fixed initialmagnetic
layer moment as initialization values—and subsequently examining the resulting magnetic proper-
ties. It was found that anML-based optimization of the structural andmagnetic input quantities was
capable of improving the fraction of successfully relaxed film systems from 64.8 % to 94.3 %. This
concludes that 31.3 % of the successfully relaxed film systems were successfully relaxed solely due
to ML models using previously acquired ab initio data to optimize the setup. For the ML-predicted
initial magnetic configurations, 75 % were confirmed by the subsequent DFT calculations to repre-
sent a valid magnetic ordering for the relaxed film structure. In fact, this approach of using ML to
optimize input parameters solved a very prominent problem in high-throughput ab initio computa-
tion studies. It is current practice to approach convergence issues in a trial-and-error fashion, which
lacks systematicity and computational efficiency. Furthermore, the use of ML-based input parame-
ter optimization proved to have the potential of reducing the average number of needed relaxation
steps by up to 29 % and simultaneously decreasing the average number of required total relaxation
steps by up to 17 %. This is achieved, as on average, the ML prediction error of the magnetic layer
moments is decreased by 60 % compared to the initial fixed guess, while the ILD prediction error
is reduced by 50 % in comparison to the initial bond length ILD estimates. Beyond the substrate,
the tendency of the 3𝑑 elements in the magnetic layers to either receive an induced magnetic mo-
ment or induce their neighboring layer with a magnetic moment has been examined. It was found
that—consistent with the physical intuition—the upper and lower end of atomic numbers within
the 3𝑑 transitionmetal group tend to gain an inducedmoment, while Mn, Fe, and Co tend to induce
a magnetic moment into their neighboring layer significantly more often.

The developed methodology regarding the systematic and high-throughput compatible ML-
based input parameter tuning could also be applied to quantities other than the ILDs and magnetic
moments, representing both an input and an output of a DFT calculation. In principle, this method-
ology could be applied to the charge density itself to either boost convergence or provide a better
starting density. This systematic study could be easily extended by increasing the number of mag-
netic layers placed on the substrate layers or by increasing the selection of magnetic layer elements
to e.g. 4𝑑 or even 5𝑑 transition metal elements. Also, as fcc noble metal substrates have been ex-
amined, an extension to other substrates or even substrate structures such as e.g. hcp Ru and Os
would be imaginable. Eventually, the published relaxed film structures could be used to extend the
presented study by including antiparallel magnetic layer moments—on opposite substrate interface
layers—in the initialization of the magnetic structures and the investigation of conductivity proper-
ties of different film setup configurations and compositions. This could also include the study of
films with intermixing of layers, which can occur during the growth process of thin-film systems.
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Appendix A
JuHemd LDA Data Overview

In order to complete the picture provided during the discussion of the JuHemd GGA data set, the 𝑇𝑐
distribution for the LDA data set is given in Figure A.1.

Figure A.1: Post-processing distribution of critical temperatures in the LDA data extracted from the
JuHemd. The depiction complements the presented picture of JuHemd data from Figure 3.3.

From Figure A.1 it can be seen that the distribution of critical temperatures is slightly shifted
towards the lower range when compared to the GGA critical temperature distribution. The GGA
distribution of the site-specific atomic number occupations is shown in Figure A.2. It is apparent
from Figure A.2 that the distribution of site-specific atomic numbers in the LDA data is very close to
the GGA atomic numbers distribution.

175



Figure A.2: Distribution of atomic numbers in the compounds extracted from the JuHemd contained,
with color-coded lattice site positions, post-processing and after outlier removal. This depic-
tion of the atomic To number distribution has been generated using the LDA data set. The
depiction complements the presented picture of JuHemd data from Figure 3.4.
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Appendix B
Bond Length Estimates

During the initial ILD estimation, average bond lengths computed using data from the materials
science database operated by the Materials Project [94] have been used before implementing the
DFT-integrated ML approach. To compute the ILDs for the film systems, the bond length estimation
for all magnetic element combinations, magnetic and substrate element combinations, and the indi-
vidual substrates must be known. The bond length estimates for all magnetic element combinations
are displayed in Table B.1.

Elemental Pair Sc Ti V Cr Mn Fe Co Ni Cu Zn

Sc 3.27 2.99 3.04 2.85 2.87 2.89 2.86 2.74 2.82 2.91
Ti 2.99 2.91 2.71 2.82 2.78 2.57 2.52 2.60 2.81 2.82
V 3.04 2.71 2.7 2.49 2.49 2.58 2.60 2.61 2.59 2.69
Cr 2.85 2.82 2.49 2.56 2.44 2.47 2.52 2.46 2.55 2.57
Mn 2.87 2.78 2.49 2.44 2.48 2.50 2.47 2.52 2.62 2.51
Fe 2.89 2.57 2.58 2.47 2.50 2.58 2.46 2.53 2.53 2.66
Co 2.86 2.52 2.60 2.52 2.47 2.46 2.49 2.49 2.51 2.50
Ni 2.74 2.60 2.61 2.46 2.52 2.53 2.49 2.48 2.48 2.53
Cu 2.82 2.81 2.59 2.55 2.62 2.53 2.51 2.48 2.56 2.61
Zn 2.91 2.82 2.69 2.57 2.51 2.66 2.50 2.53 2.61 2.60

Table B.1: Bond length estimations of all magnetic element combinations within the given setup condi-
tions. Whenever the bond length of an elemental bulk was available for the fcc lattice, this
estimate was used on the diagonal of this table. All estimates from this table have the unit
of Å.

The bond length estimates for combinations of magnetic and substrate elements are pre-
sented in Table B.2. The bond length estimates for the substrates (and substrate combinations) are
provided in Table B.3.
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Elemental Pair Rh Pd Ag Ir Pt Au

Sc 2.80 2.86 2.98 2.81 2.87 2.96
V 2.67 2.69 2.74 2.62 2.69 2.73
Ti 2.68 2.80 2.90 2.74 2.82 2.86
Cr 2.59 2.68 2.92 2.60 2.64 2.77
Mn 2.55 2.71 2.57 2.57 2.75 2.81
Fe 2.55 2.63 2.67 2.68 2.64 2.67
Co 2.66 2.68 2.71 2.58 2.69 2.80
Ni 2.59 2.64 2.60 2.69 2.72 2.60
Cu 2.64 2.72 2.67 2.64 2.79 2.68
Zn 2.71 2.63 2.88 2.65 2.78 2.72

Table B.2: Bond length estimations of all magnetic and substrate element combinations within the given
setup conditions. All estimates from this table have the unit of Å.

Elemental Pair Rh Pd Ag Ir Pt Au

Rh 2.72 2.76 2.89 2.74 2.74 2.83
Pd 2.76 2.80 2.86 2.76 2.81 2.83
Ag 2.89 2.86 2.94 2.92 2.89 2.94
Ir 2.74 2.76 2.92 2.74 2.77 2.84
Pt 2.74 2.81 2.89 2.77 2.81 2.89
Au 2.83 2.83 2.94 2.84 2.89 2.95

Table B.3: Bond length estimations of all substrate element combinations within the given setup con-
ditions. Whenever the bond length of an elemental bulk was available for the fcc substrate
lattice, this estimate was used on this table’s diagonal. All values from this table have the unit
of Å.

However, the presented bond length estimates alone do not represent a reasonable guess
for the ILDs. Rather, the estimates need to be scaled according to equation (B.1) to the geometry of
the given problem. Within equation (B.1), the ILD 𝑑ILD

𝑋𝑌 between an upper layer𝑋 and a lower layer
𝑌 is determined. In this case 𝑌 could represent the substrate interface or a lower magnetic layer.
This computation required the magnetic 𝑋 element’s bulk length estimate 𝑑𝐺𝑢𝑒𝑠𝑠

𝑋 , the substrate’s
bulk length estimate 𝑑𝐺𝑢𝑒𝑠𝑠

𝑆𝑢𝑏 , and the average computed bond length of the elements 𝑋 and 𝑌
represented by 𝑑𝐺𝑢𝑒𝑠𝑠

𝑋𝑌 . [11, 92]

𝑑ILD
𝑋𝑌 = 𝑑𝐺𝑢𝑒𝑠𝑠

𝑋
𝑑𝐺𝑢𝑒𝑠𝑠

𝑆𝑢𝑏
⋅ 𝑑𝐺𝑢𝑒𝑠𝑠

𝑋𝑌√
2

(B.1)

Also, it should be noted, that the initial bulk lattice constant used to set up the EOS computation of
the substrates is given by the diagonal’s in Table B.3.
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Appendix C
Guess Error Development

Figure C.1 shows the development of the MAE calculated when comparing the initial ILD guesses,
computed using average bond lengths, and the relaxed ab initio ILD.

Figure C.1: Development of the MAE resulting from the comparison of the initial ILD guesses—used dur-
ing the first two DFT-integrated ML iterations—and the relaxed ab initio ILDs for increasing
amounts of available data. The ILD errors seen in this depiction have been used to visualize
the relation displayed in Figure 3.41.
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From Figure C.1 it is apparent that the error values do not exhibit an increasing or decreas-
ing trend—which is expected as the guessing method is independent of the number of data points
collected by the successful relaxations—in contrast to the ML-based input parameter optimization
approach. It can also be seen that theMAE for the 𝑑𝐶𝑆𝑢𝑏 ILD is reduced compared to the other. This
can be explained by the fact that this particular ILD only has a non-relaxing substrate on one side,
simplifying the relaxation for this specific layer. Furthermore, it can be seen in Figure C.2 that the
error development is also relatively invariant regarding the amount of accumulated training data.
Of course, there is some oscillation around the average taking place for both the ILDs and magnetic
moment’s error development. However, this oscillation is solely governed by the statistics of the
chosen test set for which the error is evaluated for each amount of training data considered.

Figure C.2: Development of the MAE on a test set resulting from the comparison of the unanimously
fixed initial magneticmoment guess—used during the first DFT-integratedML iteration—and
the resulting ab initiomoments for increasing amounts of available data. The ILD errors seen
in this depiction have been used to visualize the relation displayed in Figure 3.41.
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Appendix D
Substrate Elements Density of States

Despite belonging to the group of fcc noble metals, the DOS of the elements used as film substrates
in section 3.3 already indicate that the resulting film systems will have inequivalent properties. A
key difference between the DOS of Ag and Au in comparison to the other elements’ DOS, is that
both fcc Ag and fcc Au have fully occupied 𝑑 electron states, as can be seen in Figure D.3. For the
remaining fcc noble metals, it can be seen in Figures D.1 and D.2 that the DOS exhibits a non-zero
𝑑 PDOS at the Fermi level. Therefore, the 𝑑 states cannot be fully occupied for these elements.
The DOS computations, which were performed in order to obtain the displayed figures, follow the
computation setup described for the FLAPW validation calculations in section 3.2.4 using a Fermi
smearing of 𝜎 = 0.005

3 Ha and the twofold number of k-points. From the presented DOS depictions,
it is apparent that for increasing periodic table group numbers, the corresponding element’s 𝑑 states
are filled up.

(a) PDOS of bulk fcc Rh. (b) PDOS of bulk fcc Ir.

Figure D.1: PDOS of the fcc noble metals from group 9 of the periodic table. In this figure, the black line
represents the total DOS of the corresponding fcc unit cell, and the green line represents the
PDOS contribution to the total DOS of a single atom’s 𝑑 states.
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(a) PDOS of bulk fcc Pd. (b) PDOS of bulk fcc Pt.

Figure D.2: PDOS of the fcc noble metals from group 10 of the periodic table. In this figure, the black line
represents the total DOS of the corresponding fcc unit cell, and the green line represents the
PDOS contribution to the total DOS of a single atom’s 𝑑 states.

(a) PDOS of bulk fcc Ag. (b) PDOS of bulk fcc Au.

Figure D.3: PDOS of the fcc noble metals from group 11 of the periodic table. In this figure, the black line
represents the total DOS of the corresponding fcc unit cell, and the green line represents the
PDOS contribution to the total DOS of a single atom’s 𝑑 states.
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Appendix E
Modified Pair Interaction Algorithm

The modified algorithm, which was used, to compile the heatmap plots displaying the FM, AFM,
and non-magnetic pair interaction counts amongst all relaxed film structures, collected during this
thesis, is shown in Algorithm E.1.

Algorithm E.1: Modified algorithm (adapted from Algorithm 3.1) computing the magnetic
layer pair interaction types, without regard of the active or passive magnetic moment induc-
tion and under consideration of non-magnetic layers as separate interaction type. [338]

1 function getpairInteractionTypeMod (𝑚𝐴, 𝑚𝐵, 𝑚𝐶);
2 Input :Three floats𝑚𝐴, 𝑚𝐵, and𝑚𝐶
3 Output :Two ints pairIntTypeAB and pairIntTypeAB
4 if (𝑚𝐴 >0 &𝑚𝐵 >0 ) || (𝑚𝐴 <0 &𝑚𝐵 <0) then
5 pairIntTypeAB← 1;
6 end if
7 if 𝑚𝐴 == 0 ||𝑚𝐵 == 0 then
8 pairIntTypeAB← 0 ;
9 end if

10 if (𝑚𝐴 >0 &𝑚𝐵 <0 ) || (𝑚𝐴 <0 &𝑚𝐵 >0) then
11 pairIntTypeAB← −1;
12 end if
13 if (𝑚𝐵 >0 &𝑚𝐶 >0 ) || (𝑚𝐵 <0 &𝑚𝐶 <0) then
14 pairIntTypeBC← 1;
15 end if
16 if 𝑚𝐵 == 0 ||𝑚𝐶 == 0 then
17 pairIntTypeBC← 0;
18 end if
19 if (𝑚𝐵 >0 &𝑚𝐶 <0 ) || (𝑚𝐵 <0 &𝑚𝐶 >0) then
20 pairIntTypeBC← −1;
21 end if
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