
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20449  | https://doi.org/10.1038/s41598-024-71342-1

www.nature.com/scientificreports

Practical feature filter strategy 
to machine learning for small 
datasets in chemistry
Yang Hu 1,2*, Roland Sandt 1,2 & Robert Spatschek 1,2,3

Many potential use cases for machine learning in chemistry and materials science suffer from small 
dataset sizes, which demands special care for the model design in order to deliver reliable predictions. 
Hence, feature selection as the key determinant for dataset design is essential here. We propose 
a practical and efficient feature filter strategy to determine the best input feature candidates. 
We illustrate this strategy for the prediction of adsorption energies based on a public dataset and 
sublimation enthalpies using an in-house training dataset. The input of adsorption energies reduces 
the feature space from 12 dimensions to two and still delivers accurate results. For the sublimation 
enthalpies, three input configurations are filtered from 14 possible configurations with different 
dimensions for further productive predictions as being most relevant by using our feature filter 
strategy. The best extreme gradient boosting regression model possesses a good performance and 
is evaluated from statistical and theoretical perspectives, reaching a level of accuracy comparable to 
density functional theory computations and allowing for physical interpretations of the predictions. 
Overall, the results indicate that the feature filter strategy can help interdisciplinary scientists without 
rich professional AI knowledge and limited computational resources to establish a reliable small 
training dataset first, which may make the final machine learning model training easier and more 
accurate, avoiding time-consuming hyperparameter explorations and improper feature selection.

Machine learning (ML) nowadays plays a central role for many applications in chemistry, physics and materials 
science due to its potential to unravel unexplored relations and to predict properties, which are hard to access 
with established experimental or computational methods. However, the required training datasets in several 
of these disciplines are often rather small and hard to expand due to high experimental efforts and costs1. 
Unfortunately, having sufficiently large and reliable training datasets is an essential precondition for a good 
model. Therefore, feature selection is considered a key determinant for obtaining an optimal model under these 
circumstances, and, in turn, a suboptimal feature selection can have a huge detrimental impact on the predic-
tive capabilities of the final model2. In general, different algorithms possess distinct sensitivities to the training 
dataset types and have different advantages in dealing with different problems. A good input feature selection 
sets the model’s upper limit for the prediction quality, and consequently, different algorithms and their hyperpa-
rameters can strongly affect how close the model approaches this accuracy limit3. Feature selection is the initial 
step to build a training dataset, and the initial features guess is normally according to experience. For example, 
Yin et al. used atomic mass, radius and electronegativity to predict the oxygen vacancy formation energy of 
perovskite structures using only 110 data points4. Zhang et al. use the atomic radius as the central input to pre-
dict the lattice constant of A2XY6 perovskite structure via just 79 data points5. Although deep learning could in 
general automatically extract useful features from the raw data, the feature engineering for traditional machine 
learning methods needs to select the input features manually, and this process demands additional efforts and 
computational costs6. We mention that a good feature selection could still improve deep learning’s performance 
or reduce the number of input features. Moreover, deep learning is not always superior to traditional machine 
learning algorithms, especially since the required computational resources for traditional machine learning 
algorithms are usually significantly lower than for deep learning. Especially for small datasets, traditional ML 
algorithms often possess a better performance than deep learning approaches7. However, for manual feature 
selection, people often prefer to list all possible input features without considering dimensional increases. This 
can lead to the curse of dimensionality (Hughes phenomenon), i.e., when the number of dimensions or features 
increases with a training sample with a fixed size, the average predictive power of a classifier or regressor may 
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initially improve. However, beyond a certain point of dimensionality, the predictive power starts deteriorating 
rather than steadily improving8–10. Several scientists have proposed strategies to train a model with a small dataset 
in physics, chemistry and materials science. For example, Zhang et al. proposed a strategy by incorporating the 
crude estimation of properties in the feature space to establish ML models using small-sized materials data and 
succeeded in increasing the prediction accuracy11. Vanpoucke et al. have improved the model accuracy by the 
introduction of an ensemble-averaged model12. However, for the feature selection process, a general, simple and 
practical method for ML practitioners in different interdisciplinary areas is still lacking.

Recently, the Automated Machine Learning (AutoML) technique has appeared, which can automatically 
train an acceptable model with several algorithms efficiently, as demonstrated in various applications13. As an 
example, Celik et al. predicted the lithium battery cycle lifes by using the H2O AutoML library, which leads to 
a final accuracy of 99.81% for the cycle life14,15. Musigmann et al. also used H2O AutoML for potential applica-
tions in diagnostic neuroradiology and it shows promising results16. From an application perspective, AutoML 
may appear as a “black box”, especially for users from a non-machine learning background17. Such tools are 
extremely valuable for generating predictions and unraveling correlations that are difficult to see directly even 
for small data sets. Still, ideally and manually adjusted models may still be superior to such semi-automatic 
treatments. The latter allows to focus more on the materials science perspective in the present case. Moreover, 
several open-source alternatives to AutoML are available like Auto-Sklearn18, TPOP219, PyCarret20, AutoGluon21, 
and Automatminer22, which in principle allow also to understand the workflows in full detail. For the present 
approach, AutoML’s high efficiency and low threshold concerning required AI skills and computational resources 
are beneficial.

In the present paper, we use AutoML approaches for an efficient parameter filtering strategy for problems with 
small training data sets. Next to the approach pursued here, also alternative methods like the aforementioned 
packages, recursive feature elimination, feature selection using SelectFromModel and L1-based feature selection 
in the Scikit-Learn23 could be used. To make the present approach as transparent as possible, we study two dif-
ferent use cases, namely adsorption and sublimation, which are common and significant processes in chemistry, 
to highlight the approach. Adsorption describes the attachment of molecules and atoms on a surface and plays 
an important role in various chemical areas, such as catalysis. The adsorption energy is a significant concept for 
the analysis of this process, which is often computed via density functional theory (DFT) calculations. Toyao 
et al. used several ML algorithms to investigate the adsorption of CH4 and related species, like CH3 , CH2 , CH, 
C and H on Cu-based alloys and achieved remarkable results24. Sublimation plays a central role in a wide range 
of physical-chemical problems and can e.g. be responsible for various degradation phenomena induced by the 
evaporation process of Cr-related gaseous species in solid oxide fuel cells (SOFCs)25. As long as the sublima-
tion requires only to overcome a single energy barrier, the vapor pressure p is described by an Arrhenius-type 
sublimation function,

Here, �Hsub is the sublimation enthalpy in the sense of the aforementioned energy barrier, and A is the prefac-
tor, R and T are the ideal gas constant and the temperature, respectively. Knudsen effusion mass spectrometry 
(KEMS) can be used for the experimental determination of the sublimation function-related parameters26. For a 
solid material, the vapor pressure is usually low, especially at low temperatures, which can make its experimental 
determination difficult. Complementary, computational methods were developed to investigate the sublimation 
enthalpy, in particular using density functional theory (DFT). We have developed a physical model to predict the 
sublimation behavior by combining DFT calculations and statistical mechanics, exhibiting a good performance 
for several compounds27,28. However, quantum chemistry methods have high computational demand, and the 
development of suitable physics-inspired models for the prediction of the vapor pressure through elementary 
properties of atoms and molecules is required to allow for high throughput material screening computations. 
During the past years, several researchers have tried to use ML to predict the sublimation enthalpy. Nastaran 
et al. use quantitative structure-property relationships (QSPR) modeling to predict the enthalpy and Gibbs 
energy of sublimation, where the most robust and predictive model is constructed by linear regression, which 
could be improved by neural networks29. Sabrina et al. use a Gaussian process regression model with different 
features, namely E-state fingerprints, custom descriptor set and sum over bonds for organic compounds for the 
prediction of the sublimation enthalpy30.

In the present article, we propose a practical feature filter strategy to build a reliable training dataset for 
preconditioning the ML model training. To this end, the training dataset of adsorption energies is taken from 
the literature24. According to our filter approach, a reduction of the given 12 features to just a two-dimensional 
(2D) configuration space becomes possible, which is then used for further ML training. For this second step, 5 
different ML algorithms, namely, extra tree regression (ETR), extreme gradient boosting regression (XGBoost), 
support vector regression (SVR), decision tree regression (DTR) and Gaussian process regression (GPR) deliver 
a higher accuracy, compared to reported values using models with higher dimensional input in the literature. For 
the sublimation enthalpies prediction, we use data from the thermodynamic databases in FactSage31. In total, 
not more than 177 different pure substances, each containing a maximum of two types of elements, are chosen 
for model training. Furthermore, eight additional substances including Sr, Ni, Cu, Cr, NaCl, NaF, SiO2 and ZrO2 
constitute our prediction dataset. Here, we apply the filter strategy with the help of AutoML for screening suitable 
and relevant feature combinations from 14 different configurations consisting of 8 initial input feature candidates. 
These basic input feature candidates are considered based on general physical arguments and expectations. 
Several possible input candidate groups are investigated in AutoML as a prescreening step, and the final input 
candidate set is selected from the minimization of the average mean absolute error ( MAE ) and used for further 
refined ML simulations. As for the adsorption example, we train our ML models with four different algorithms, 

ln p = −�Hsub/RT + lnA.
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namely, XGBoost, SVR, DTR and GPR as a second step for obtaining a refined model. The evaluation of the 
models’ accuracies is carried out from two perspectives: First, a statistical evaluation via mean absolute error 
(MAE) and root mean squared error (RMSE) calculations, and second, a theoretical perspective with the help of 
the relative feature importance and the Shapley additive explanations (SHAP) value. This analysis makes our ML 
model interpretable and illustrates the contribution of each input feature to the final prediction directly, allowing 
us to understand the features’ relevance and supporting a physical understanding, which confirms the accuracy 
and their theoretical background very well. The manual hyperparameters optimization process is with the help 
of the GridsearchCV optimization algorithm in the different ML methods. The predicted sublimation enthalpies 
of the prediction dataset are compared to the initial FactSage training dataset and independent DFT calculations.

Results
Feature filter process using AutoML
The conventional approach to select features is illustrated by the black and blue parts of the flow diagram in Fig. 1, 
as compared to the novel approach which uses the red instead of the blue branch for the feature selection. In the 
conventional approach, after the initial guess of features, which is typically according to personal experience, the 
possible features are directly used to build the training dataset. When the model’s performance is not as expected, 
the hyperparameters are optimized and more features may be considered in the training dataset. However, this 
process can be long-lasting and may require substantial manual work, and typically depends strongly on personal 
expectations and biases. A further improvement of the accuracy by optimization of the hyperparameters could 
be very hard, and adding new features is risky as it may lead to the curse of dimensions.

In contrast, the newly proposed approach (red branch) uses an initial filter strategy to select the suitable 
features first, instead of directly using all feature candidates, as this latter approach could lead to serious draw-
backs from the high dimensional configuration space. Therefore, the AutoML approach can test many differ-
ent algorithms with high computational efficiency simultaneously to obtain an acceptable initial ML model, 
and each test typically takes only a very short time (for the chosen examples, only around 5 seconds per test), 
depending on the specific problem and settings. After the initial feature guess, the suggested configurations are 
listed and imported into AutoML for a quick test. The suggested configurations are selected based on physical 
and chemical reasoning. In the conventional approach, all possible features are listed, however, some features 
may not have extremely high correlations. In contrast, in the present process, we aim to use our strategy to filter 
these less relevant features. At this stage, the final training dataset candidate has to satisfy two main standards: (i) 
relatively higher accuracy than the other candidates; (ii) lower dimensions with comparable accuracy. Finally, a 
high-quality training dataset is utilized for the model training and further model improvements can be restricted 
to a hyperparameter optimization. Overall, this strategy possesses three main advantages, especially for small 
datasets: First, it avoids the curse of dimension, second, it avoids a bias in the initial feature guesses, third, it 
saves time for the hyperparameter search by skipping reasonless feature selection steps, and fourth, it provides 
an initial accuracy benchmark for further model training.

Figure 1.   Illustration of the computational workflow with feature filter strategy. The black part of the diagram 
is common to both the conventional feature selection route and the novel approach. The blue parts are specific 
to the manual selection in the conventional approach, whereas the red route illustrates the workflow for the new 
methodology.
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In the following, all necessary steps, which are given in the flow diagram in Fig. 1, are illustrated in detail for 
the two examples of the adsorption and sublimation enthalpies.

Adsorption energy
We base the analysis for the adsorption energy prediction on the careful analysis and data provided by Toyao 
et al.24. They have used 4 different ML algorithms to predict the DFT calculated adsorption energies of CH4 
related species, like CH3 , CH2 , CH, C and H on Cu-based alloys depending on the 46 data points training data-
set by using 12 features, the train/test split ratio is fixed as 0.75 first, the evaluation process is a statistical result 
via calculation of the average RMSE ( RMSE ) of different test datasets for 100 times. Here, we used only the 
prediction of adsorption energy of CH3 as an example. We first performed univariate analyses using Kendall’s 
tau coefficient (KTC), which is suitable for a small database. It shows that Tm and SUE have a higher KTC, and 
SUE has the highest KTC. However, other parameters do not show clear correlations (Supplementary Fig. 1), 
therefore suggesting to use further machine-learning approaches. As algorithms, ordinary linear regression 
by least squares (OLR), random forest regression (RFR), gradient boosting regression (GBR) and ETR were 
employed. After that, other 10D, 6D, 5D and 3D input feature sets were tested, chosen according to the relative 
feature importance, as obtained through ETR24.

In the current paper, 12 initial features are employed for the filtering process, as suggested by the authors of the 
previous study24. These are the atomic number in periodic table AN, atomic mass AM, group G, period P, atomic 
radius R, electronegativity χ , melting temperature Tm , boiling temperature TB , enthalpy of fusion �Hfus , density 
ρ , ionization energy IE and surface energy SUE. For the filtering process, we follow the red route in Fig. 1. As the 
first step, 17 different configurations are employed for this part (Supplementary Table 1), to identify reasonable 
parameter combinations. The determination of the configuration considers the similarity of physical properties, 
such as the Tm , TB and �Hfus . In the second step, these 17 configurations are quickly tested in AutoML. To be 
comparable to the previous work24, we keep the same split ratio of 0.75. We concentrate on the average errors of 
all predictions, hence MAE is used as an error metric. Since RMSE is utilized as the evaluation criterion in the 
proceeding analysis, the related RMSEs are also recorded here (Supplementary Table 1 and Table 2). Figure 2a 
shows the MAE and RMSE of the prescreening tests (steps 3 & 4).

Overall, the accuracy fluctuates in a certain range and stabilizes beyond a feature space dimension of four. 
Furthermore, as the dimensionality increases, MAE and RMSE exhibit a slight upward trend. This trend is more 
pronounced in terms of RMSE beyond 7D, which may indicate the Hughes phenomenon. Finally, as the results 
of the fifth prescreening step, we consider the two-dimensional group 2 with high accuracy but with the lowest 
dimension for further exploration.

To possibly improve these predictions, we use XGBoost, SVR, DTR and GPR algorithms for the model train-
ing. As ETR was used in the preceding analysis24, we additionally employ this approach here. The dataset is split 
with the split ratio of 0.75 as before, and each model is tested 100 times, for better comparability to the reference 
work24. Therefore, 100 random test datasets were created (Supplementary Table 1 and Table 4). Figure 3 compares 
the RMSE of the five different ML models by using the previously selected 2D input to that of the 8 previously 
reported different models with 3-12 dimensional input feature spaces24.

Overall, all models exhibit similar performance, and the 2D model based on the previously filtered features 
shows a slight accuracy advantage, which is similar to the RMSE as obtained through the AutoML prescreening 
only. This example shows that the parameter filter strategy has effectively reduced the dimensions from 12D to 
2D, while maintaining accuracy. As the data set contains only 46 data points, this drastically reduces the sparsity 
in the configuration space and therefore allows for more robust predictions.

Sublimation enthalpy
For the example of sublimation enthalpies, eight different features are used as feature candidates according to 
general experience. In detail, we use the atomic number of the (gaseous) molecules (N), their atomic radius 

Figure 2.   Comparison of accuracy in prediction of and (a) adsorption energies and (b) sublimation enthalpies 
based on the AutoML tests for different feature groups. The continuous curves are a guide to the eye only.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20449  | https://doi.org/10.1038/s41598-024-71342-1

www.nature.com/scientificreports/

(R), atomic mass (m) and electronegativity ( χ ) and melting temperature ( Tm ), as they are expected to influence 
the chemical bond strength. Most of these variables exist for both A and B elements in compounds of the type 
AnBm , hence the total variable set contains the 8 independent features N, RA , RB , mA , mB , χA , χB and Tm . Simi-
larly to above, a univariate analysis is employed first, and it shows clear correlations between the melting point 
and the sublimation enthalpy, which is plausible from physical arguments, but is not conclusive concerning the 
other feature variables (Supplementary Fig. 2). Therefore, from the above variable set, we constitute 14 differ-
ent configurations(step 1) (Supplementary Table 5). It should be mentioned that several of these combinations 
may lack practical relevance and are only used for comparison and demonstration of the general strategy. In 
the second step, we employ again AutoML for the test of different ML models. The MAE/RMSE , as obtained 
from different random training datasets by using the common split ratio of 0.8, is then used as an error metric 
(Supplementary Table 5 and Table 6). Figure 2b compares the MAEs/RMSEs , showing that the model’s accuracy 
generally improves with an increase in input feature dimension and finally stabilizes beyond the six-dimensional 
(6D) input set. One 7D outlier without the input feature Tm possesses an extremely high error, indicating the 
importance of the melting point to the final prediction (steps 3 &4). Considering the comparable high accuracy 
of group 14 (8D) and the comparable performance of group 7 (6D), these 2 groups are allowed to be the can-
didates for the next ML training round (step 5). For the explanation of the dimensional effect, group 12 (7D) is 
also taken into account for this next round.

Based on the above preselection of features, we develop ML models to predict sublimation enthalpies, using 
MAE, RMSE and R-Squared ( R2 ) as error metrics. The ML models are developed with four different algorithms, 
which have been used to predict eight untrained substances (prediction dataset). All results are listed in (Sup-
plementary Table 7). Figure 4a compares the MAE and RMSE of the four different ML algorithms with three 
different input dimensions (6D, 7D and 8D), which are considered as the competitive input candidates, as 
elaborated above.

The RMSE is larger, as it is more sensitive to large errors and outliers than the MAE. The comparison of the 
R2 is shown in Fig. 4b, and the closer R2 gets to 1, the better the result. In general, all models capture the general 
trends of the AutoML tests well but with higher accuracy. With the exception of the GPR model, the models 
possess a good performance, and XGBoost, trained with eight features (8D-XGBoost), gives the highest accuracy 
with a MAE of 0.3189 eV, RMSE of 0.4675 eV and a highest R2 of 0.9325. The SVR model performs better as the 
dimensionality increases, such as the MAE decreased from 0.4940 eV in six dimensions to 0.3805 eV in eight 
dimensions. The DTR models exhibit a relatively similar performance across all dimensions.

One outlier (Cr) is observed in the plot of the predicted values versus the true values (Supplementary Fig. 3), 
thus, we calculate also the corresponding MAE, RMSE and R2 without Cr, namely, MAEw , RMSEw and R2

w . Fig-
ure 4c,d compare the MAEw , RMSEw and R2

w of our models to DFT results. Here, the purple and black dashed 
line in Fig. 4c represents the MAEw , RMSEw of the DFT calculations, and the black dashed line in Fig. 4d is the 
R2 value. The red dashed circles in both figures compare the results of the 8D input feature XGBoost model to 
the DFT results. It is worthwhile to mention that the 8D XGBoost reaches almost the same accuracy level as the 
independent DFT calculations. Hence, by excluding the outlier Cr the improvement in the accuracy of all models 
becomes clearly evident. It should be noted that the ML models have a significantly lower computational effort, 
as compared to the quantum mechanical calculations with the required structure optimizations of the solid and 
gaseous phases, and the new approach could even be improved by the expansion of the training dataset.

Apart from the evaluation from a statistical perspective, we also explore physical and chemical interpretations 
of the trained models, which is independent of the above feature selection. The final model (8D-XGBoost) is an 

Figure 3.   Comparing the RMSE (eV) of 2D input for adsorption energies to that of the 3-12 dimensional input 
in the literature24, using 100 tests.
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interpretable tree-based XGBoost algorithm. The theoretical explanation of the predictions is carried out with 
the help of the relative feature importance and SHAP value calculations, as shown in Fig. 5.

According to the relative feature importance in Fig. 5a, the melting temperature Tm has a dominant influence 
with the highest contribution of 77.63%. This is in agreement with the physical expectation that a higher melting 
point Tm reflects a higher bond strength inducing a higher sublimation enthalpy. The atomic mass of the B-side 
element mB takes second place with a contribution of only 6.11%, followed by the electronegativity of the B-side 

Figure 4.   Comparison of sublimation enthalpy results of the (a) MAE and RMSE, (b) R2 of four different ML 
algorithms with 6D-8D inputs; (c) MAEw , RMSEw , (d) R2

w are that without outlier Cr. The hists in (a,c) with 
solid colors and the pattern are the MAE and RMSE, respectively; the dashed lines in (c,d) are the previous DFT 
calculations.

Figure 5.   (a) Relative feature importance and (b) SHAP values of the 8D-XGBoost model for the sublimation 
enthalpies.
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element (4.71%). Figure 5b indicates the results of SHAP value calculations, where the color reflects the feature 
values versus SHAP values. A positive (negative) SHAP value indicates a positive (negative) impact of this data 
point on the prediction, and a larger absolute SHAP value indicates that the influence is higher. Here, we focus 
only on the top three features in contribution analysis. For the melting temperature Tm , the impact thereof on 
the final prediction is almost linear, and a higher melting temperature Tm has a more positive influence on the 
final prediction. For the atomic mass of the B-side element mB , some data points with very low mass mB have 
a positive impact on the prediction. For the outlier Cr the relation between sublimation enthalpy and melting 
temperature is inverted, if compared e.g. to Fe. In this case, inclusion of additional features like the boiling tem-
perature could lead to improved predictions.

For a physical and chemical interpretation and prediction of the sublimation enthalpy, a dimensional reduc-
tion from the originally eight-dimensional space based on the observed main dependencies is beneficial. There-
fore, we use a heatmap plot in Fig. 6 for the predicted sublimation enthalpy as a function of the dominant features 
Tm and mB , assuming that all other, less relevant features are kept constant.

The figure shows a similar trend as the above relative feature importance and SHAP analysis, and again a 
higher melting temperature Tm leads to a higher sublimation enthalpy. Nevertheless, in certain specific parameter 
ranges with a lower mass mB < 30u a higher sublimation enthalpy is predicted than by the melting temperature 
alone. In the periodic table, B site elements with small mass and compounds with high melting temperature Tm 
are quite common, like B, C and N, forming borides, carbides and nitrides. Such compounds typically exhibit 
elevated levels of hardness and melting points, hence also high sublimation enthalpies can be expected. It is 
worthwhile to mention that the training dataset does not include borides and carbides. Nitrides are also expected 
to have high sublimation enthalpies due to the low mass of nitrogen, and indeed AlN with a sublimation enthalpy 
of 7.58 eV is contained in the training dataset. We can therefore conclude that the models lead to good predictions 
of the sublimation enthalpy despite the small training dataset, and the predictions are in line with fundamental 
physical and chemical expectations and arguments.

Discussion
In this paper, we have proposed a practical feature filter strategy for ML applications e.g. in materials science, 
physics and chemistry, where often only small training data sets are available. As a first example, we have used 
an open training dataset concerning adsorption energies of CH4 related species CH3 on Cu-based alloys. Using 
the proposed approach, we succeeded in reducing the initial 12-dimensional feature space to just 2D with even 
slightly increased accuracy. This reduction of features is obtained through a simple and computationally inex-
pensive approach, reducing not only the risk of the curse of dimensions but also allowing for an easier physical 
interpretation of the predictions. The same approach is also demonstrated using an example of sublimation 
enthalpies prediction for binary compounds, based on a small dataset. The filter approach identifies the melting 
temperature of the compound and the mass of the B site element as the most important feature variables, which 
are in agreement with general physical arguments and experimental experience e.g. on borides, carbides and 
nitrides. We believe that similar results can be obtained for other applications, where otherwise the excessive 
use of ML techniques is hampered by small training data set sizes. From a practitioner’s perspective it is often 
not required to determine the proven optimum algorithm, but rather an easy to use approach like the suggested 
one here, which is able to combine statistical and data driven approaches with physical background knowledge.

The proposed parameter filter strategy reduces not only the dependence of feature selection on personal 
experience and expectations but also accelerates this process significantly through the use of AutoML approaches. 
Moreover, the convolutional process often requires high computing efforts and also high personal AI skills, which 
is usually hard for interdisciplinary scientific work. The construction of a training dataset is an essential precon-
dition to obtaining a good model, and the challenge of a small database must not be ignored, as then a suitable 
feature selection is even more critical. Therefore, the suggested feature filter strategy can be helpful, particularly 

Figure 6.   Heatmap of the predicted sublimation enthalpy versus Tm and mB by using the 8D-XGBoost model; 
the features N = 2 , rA = 100 pm, rB = 130 pm, mA = 130 u, χA = 1 and χB = 1 are kept fixed.
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for scientists without rich professional artificial intelligence knowledge and enough computational resources to 
obtain a reliable small dataset practically and quickly, which could also avoid the curse of dimensions, reducing 
computing time and setting a solid foundation for further model training steps and interpretation of the results.

Methods
Data preparation
Adsorption Energies. The dataset for Adsorption Energies prediction is taken from the literature24, which con-
tains 46 data points. 12 initial features are employed, namely atomic number in the periodic table AN, atomic 
mass AM, group G, period P, atomic radius R, electronegativity χ , melting temperature Tm , boiling temperature 
TB , enthalpy of fusion �Hfus , density ρ , ionization energy IE and surface energy SUE. The label is the DFT cal-
culated adsorption energies of CH4 related species CH3 on the Cu-based alloys.

Sublimation Enthalpies. The training dataset contains in total of 177 different pure substances, and an 
additional prediction dataset including 8 different pure substances is built using the FactSage database (mainly 
FactPS, SGPS)31. The prediction database consists of Sr, Ni, Cu, Cr, NaCl, NaF, SiO2 and ZrO2 , which are also 
the calculated examples via DFT27,28. These selected pure substances differ by bond properties, namely, metallic 
bond, ionic bond and covalent bond, therefore representing a broad range of compounds as well as molecular 
structures in the gas phase. We consider vaporization according to the reaction

without dissociation of the molecules.
After the data extraction from the database, the initial input features are determined using prior scientific 

experience. The analysis and calculations in the aforementioned earlier publications show that the sublimation 
enthalpy is directly related to the bond energy. Therefore, we first propose several basic physical properties, which 
may contribute to the bond strength and also help to distinguish the atom types. Therefore, the feature candidates 
are the atomic radius (r), the atomic mass (m) and the atomic electronegativity ( χ ). In detail, we use the calculated 
atomic radii by Clementi et al.32; the atomic mass is from the National Institute of Standards and Technology 
(NIST) database 7833, and the electronegativity is expressed on the Pauling scale34. For a binary system, two 
formula units may contain the same elements but with different atomic numbers, such as WCl4 and WCl5 . The 
number of atoms in the molecule (N) is therefore a further suggested feature. Furthermore, the melting point 
Tm as a significant high-temperature physical property is also taken into account for polyatomic molecules. For 
example, for a binary system An Bm , the A site is considered to be the positive valence site. Molecules consisting 
of a single atom type are treated as An Am , hence the B position is occupied by the same element as the A position. 
Then, the possible features are combined mathematically and imported into the H2O AutoML for the filtering 
process. Finally, we have 8 different possible input features: N, RA , RB , mA , mB , χA , χB and Tm.

AutoML
The AutoML technique has the ambition to make ML methods more accessible and efficient. Here, H2O AutoML 
is employed, which is a fully automated algorithm to investigate different ML methods14. All tested models 
are evaluated by different metrics and therefore the algorithm allows an efficient determination of the best 
approach35. To ensure the model’s generalization ability, we use 17/14 different configurations as input candidates 
for the adsorption energies/sublimation enthalpies, respectively (Supplementary Table 1 and Table 5). AutoML 
is limited to use 10 different algorithms for both examples. For the adsorption energies prediction, each con-
figuration is tested three times with a train/test split ratio of 0.75 and randomly selected training data sets. The 
selection of the final input feature combination is made according to the MAE and RMSE . For the sublimation 
enthalpies prediction, we use the common train/test split ratio of 0.8 and three randomly selected training data 
sets, and MAE is used as the evaluation criterion.

Machine learning
We use the open-source package Scikit-Learn for all ML methods23, namely, ETR, XGBoost, SVR, DTR and GPR. 
The min-max normalization is employed in the data processing part, which is a common normalization method 
and has demonstrated advantages for high dimensional data spaces like the sublimation enthalpy example36. The 
manual hyperparameter exploration is done with the help of GridSearchCV from the scikit-learn library and 
with different metrics (MAE, RMSE and R2 ) with 3- and 5-fold cross-validation for the sublimation enthalpy 
data set. For the adsorption enthalpy prediction, we instead use the same test-test split ratio as in Ref.24 for bet-
ter comparability. .

Shapley additive explanations (SHAP)
The SHAP (Shapley additive explanations) method is a widely used technique in the field of explainable artificial 
intelligence (XAI), that is grounded on cooperative game theory and offers desirable properties, like interpreting 
predictions from tree ensemble methods37,38. A simpler explanation model is required to better understand the 
contributions of each input to the final prediction made by an ML model, which is defined as any interpretable 
approximation of the original model. The final impact of each input on the prediction can be analyzed according 
to the calculation of the SHAP value, where a positive (negative) SHAP value indicates a corresponding positive 
(negative) influence on the model output37,39.

(1)AmBn(s) → AmBn(g),
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Data availability
The datasets analyzed for adsorption energies are available in the published paper https://​pubs.​acs.​org/​doi/​10.​
1021/​acs.​jpcc.​7b126​70. The developed codes are available from the public repository (https://​github.​com/​yangh​
uphys​ics/​Pract​ical-​featu​re-​filter-​strat​egy-​to-​machi​ne-​learn​ing-​for-​small-​datas​ets-​in-​chemi​stry.​git).
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