Hauptseite > Publikationsdatenbank > A data-driven strategy for phase field nucleation modeling > print |
001 | 1032241 | ||
005 | 20250804115242.0 | ||
024 | 7 | _ | |a 10.1038/s41529-024-00529-8 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-06088 |2 datacite_doi |
024 | 7 | _ | |a WOS:001345098600001 |2 WOS |
037 | _ | _ | |a FZJ-2024-06088 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Hu, Yang |0 P:(DE-Juel1)188821 |b 0 |u fzj |
245 | _ | _ | |a A data-driven strategy for phase field nucleation modeling |
260 | _ | _ | |a [London] |c 2024 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1750754937_31806 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We propose a data-driven strategy for parameter selection in phase field nucleation models using machine learning and apply it to oxide nucleation in Fe-Cr alloys. A grand potential-based phase field model, incorporating Langevin noise, is employed to simulate oxide nucleation and benchmarked against the Johnson-Mehl-Avrami-Kolmogorov model. Three independent parameters in the phase field simulations (Langevin noise strength, numerical grid discretization and critical nucleation radius) are identified as essential for accurately modeling the nucleation behavior. These parameters serve as input features for machine learning classification and regression models. The classification model categorizes nucleation behavior into three nucleation density regimes, preventing invalid nucleation attempts in simulations, while the regression model estimates the appropriate Langevin noise strength, significantly reducing the need for time-consuming trial-and-error simulations. This data-driven approach improves the efficiency of parameter selection in phase field models and provides a generalizable method for simulating nucleation-driven microstructural evolution processes in various materials. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Wang, Kai |0 P:(DE-Juel1)173887 |b 1 |e Corresponding author |
700 | 1 | _ | |a Spatschek, Robert |0 P:(DE-Juel1)130979 |b 2 |u fzj |
773 | _ | _ | |a 10.1038/s41529-024-00529-8 |g Vol. 8, no. 1, p. 109 |0 PERI:(DE-600)2925488-7 |n 1 |p 109 |t npj Materials degradation |v 8 |y 2024 |x 2397-2106 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1032241/files/s41529-024-00529-8%20%281%29.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1032241 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)188821 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130979 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NPJ MAT DEGRAD : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:13:04Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:13:04Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:13:04Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NPJ MAT DEGRAD : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IMD-1-20101013 |k IMD-1 |l Werkstoffstruktur und -eigenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IMD-1-20101013 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|