
JUPITER: GPUS FOR EXASCALE

2024-11-05 I ANDREAS HERTEN | JÜLICH SUPERCOMPUTING CENTRE

OUTLINE

•JUPITER
•Components
•MDC
•JEDI
•Procurement
•GH200
•Results

•GPU Programming
•CPU vs GPU
•GPU Core Features
•CUDA

A LONG TIME AGO …

Discussions and
plannings for HPC

systems funded
directly by European

Commission

2015 2016 2017 2018 2019 2020 2021

EuroHPC Established
17.12.2021

Gauss Centre for
Supercomputing

Smart Scaling
Strategy Developed

Exascale for JSC,
HLRS and LRZ

Datacenter Studies and Campus Preparation planning
• New Datacenter planning, especially cooling/electricity
• Cost estimates
• New Grid connection and transformator station plannings

JUPITER

• ParTec/Eviden Supercomputer Consortium
• Implementing Modular Supercomputing Architecture
• JUPITER Booster: High scalability; 1 EFLOP/s HPL, >70 EFLOP/s FP8
• JUPITER Cluster: High versatility; 0.5 B/FLOP balance
• Network: 200/400 Gigabit NVIDIA Mellanox InfiniBand NDR
• Storage: 29 PB Flash + 310 PB Spinning + Tape
• 17 MW Linpack Power Consumption
• Direct Liquid Cooled to enable heat-reuse

BullSequana XH3000; DLC

Page 4

SYSTEM DETAILS

JUPITER MODULES
JUPITER Booster
• ~125 Racks BullSequana XH3000
• Node design
• ~6000 nodes
• 4× NVIDIA CG1 per node

• CG1: NVIDIA Grace-Hopper
• 72 Arm Neoverse V2 cores

(4×128b SVE2); 120 GB LPDDR5
• H100 (132 SMs); 96 GB HBM3
• NVLink C2C (900 GB/s)

JUPITER Cluster
• ~14 Racks BullSequana XH3000
• Node design
• ~1300 nodes
• 2× SiPearl Rhea1 per node

• Rhea1
• 80 Arm Neoverse V1 cores

(2×256b SVE)
• 256 GB DDR5,

64 GB HBM2e

Pr
el

im
in

ar
y

nu
m

be
rs

, m
ig

ht
 c

ha
ng

e
du

rin
g

in
st

al
la

tio
n

Page 6

JUPITER – BOOSTER COMPUTE NODE ARCHITECTURE

• ARM Neoverse V2
• SVE2/NEON (4x 128 bit vector op)

• 72 cores @ ~2.4GHz (~3.2 GHz turbo)
• 120 GB LPDDR5X (8 channels)

• ≥450 GB/s
• ~150 ns latency

• H100
• ~50 TFLOP/s (HPL single GPU)

• 96 GB HBM3
• 4000 GB/s
• ~450 ns latency

• 4× NVIDIA Grace-Hopper in SXM5 Board (4× 680W)
• 4× NVIDIA InfiniBand NDR200
• 480 GB LPDDR5X / 360 GB HBM3 (usable)
• NVLink 4

• GPU-GPU 150 GB/s per dir, CPU-GPU 450 GB/s per dir, CPU-CPU 100 GB/s per dir

• CG4 Motherboard (4× CG1 GH module + 4× CX7 HCA assembly)
• All NVIDIA, except the BMC

Node Specs

CPU Specs GPU Specs

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5

500GB/s

0

HBM3
4000GB/s

450+450GB/s

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5
500GB/s

1

HBM3

4000GB/s

450+450GB/s

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5
500GB/s

2

HBM3

4000GB/s

450+450GB/s

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5

500GB/s
3

HBM3
4000GB/s

450+450GB/s

150+150GB/s

150+150
GB/s

150+150 GB/s

150+150
GB/s

150+150
GB/s

50+50
GB/s

50+50
GB/s

50+50
GB/s

50+50
GB/s

50+50
GB/s

50+50
GB/s

0123

64+64
GB/s

64+64
GB/s

64+64
GB/s

64+64
GB/s

NODE COMPARISON

Page 8

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

0

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

1

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

2

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

3

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

15
0+
15
0
GB
/s

150+150 GB/s

15
0+
15
0
GB
/s

150+150 GB/s150+150GB/s

100+100GB/s

100+100GB/s
100+100GB/s

100+100GB/s

100+100GB/s 100+100GB/s

0

1

2

3

64+64GB/s

64+64 GB/s

64+64 GB/s

64+64 GB/s

0

1

2

3

0 1

3 2

×16

Memory

CPU

GPU

PCIe Switch

HCA

25
6

G
B

6

7 5

4

1

20

18 19 20

21 22 23
66 67 68

69 70 71

3

25
6

G
B

×16

×16 ×16

×16

×16

×16

×16

×16 ×16

×16

×16

L1

L1

L1

L1

JUWELS Booster

NODE COMPARISON

Page 9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

0

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

1

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

2

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

3

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

15
0+
15
0
GB
/s

150+150 GB/s

15
0+
15
0
GB
/s

150+150 GB/s150+150GB/s

100+100GB/s

100+100GB/s
100+100GB/s

100+100GB/s

100+100GB/s 100+100GB/s

0

1

2

3

64+64GB/s

64+64 GB/s

64+64 GB/s

64+64 GB/s

0

1

2

3

0 1

3 2

×16

Memory

CPU

GPU

PCIe Switch

HCA

25
6

G
B

6

7 5

4

1

20

18 19 20

21 22 23
66 67 68

69 70 71

3

25
6

G
B

×16

×16 ×16

×16

×16

×16

×16

×16 ×16

×16

×16

L1

L1

L1

L1

GCD 1

GCD 0 GCD 2

GCD 3

GCD 4

GCD 5

GCD 6

GCD 7

NIC 0 NIC 1

NIC 2NIC 3

CPU

Frontier

NODE COMPARISON

Page 10

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

0

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

1

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

2

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

3

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

15
0+
15
0
GB
/s

150+150 GB/s

15
0+
15
0
GB
/s

150+150 GB/s150+150GB/s

100+100GB/s

100+100GB/s
100+100GB/s

100+100GB/s

100+100GB/s 100+100GB/s

0

1

2

3

64+64GB/s

64+64 GB/s

64+64 GB/s

64+64 GB/s

Aurora

GPU 0

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

CPU 0

CPU 1

NIC 0 NIC 3NIC 1 NIC 2

NIC 4 NIC 7NIC 5 NIC 6

PCIe switch

PCIe switch
GCD 1

GCD 0 GCD 2

GCD 3

GCD 4

GCD 5

GCD 6

GCD 7

NIC 0 NIC 1

NIC 2NIC 3

CPU

0

1

2

3

0 1

3 2

×16

Memory

CPU

GPU

PCIe Switch

HCA

25
6

G
B

6

7 5

4

1

20

18 19 20

21 22 23
66 67 68

69 70 71

3

25
6

G
B

×16

×16 ×16

×16

×16

×16

×16

×16 ×16

×16

×16

L1

L1

L1

L1

ORNL

JSC

NODE COMPARISON

• JUWELS Booster: 2× CPU, 4× GPU, 4× IB
• JUPITER Booster: 4× CPU+GPU, 4× IB
• Frontier: 1× CPU, 4×(2× GPU), 4× Slingshot
• Aurora: 2× CPU, 6× GPU, 8× Slingshot
• El Capitan: 4× APU

Argonne

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

0

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

1

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

2

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

3

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

15
0+
15
0
GB
/s

150+150 GB/s

15
0+
15
0
GB
/s

150+150 GB/s150+150GB/s

100+100GB/s

100+100GB/s
100+100GB/s

100+100GB/s

100+100GB/s 100+100GB/s

0

1

2

3

64+64GB/s

64+64 GB/s

64+64 GB/s

64+64 GB/s

GPU 0

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

CPU 0

CPU 1

NIC 0 NIC 3NIC 1 NIC 2

NIC 4 NIC 7NIC 5 NIC 6

PCIe switch

PCIe switch

GCD 1

GCD 0 GCD 2

GCD 3

GCD 4

GCD 5

GCD 6

GCD 7

NIC 0 NIC 1

NIC 2NIC 3

CPU

0

1

2

3

0 1

3 2

×16

Memory

CPU

GPU

PCIe Switch

HCA

25
6

G
B

6

7 5

4

1

20

18 19 20

21 22 23
66 67 68

69 70 71

3

25
6

G
B

×16

×16 ×16

×16

×16

×16

×16

×16 ×16

×16

×16

L1

L1

L1

L1

JUPITER Booster JUWELS Booster

Frontier Aurora

JUPITER – CLUSTER COMPUTE NODE ARCHITECTURE

• ARM Neoverse V1 Zeus
• 2 x 256 SVE per core

• 2.5 GHz (~3.0 GHz turbo)

• 64 GB HBM2e per Socket
• 1.64 TB/s

• 256 GB DDR5
• PCIe Gen5

• 2× SiPearl Rhea1
• 1× NVIDIA InfiniBand NDR200
• 512 GB DDR5 (36 nodes with 1024 GB)
• CCIX

Node Specs

CPU Specs

JUPITER – STORAGE (SCRATCH)

• Gross Capacity: 29 PB; Net Capacity: 21 PB
• Bandwidth: 2.1 TB/s Write, 3.1 TB/s Read
• 20× IBM SSS6000 Building Blocks (40 servers)
• 2× NDR400 per server
• 48× 30 TB NVMe drives per block
• IBM Storage Scale (aka Spectrum Scale/GPFS)

• Manager and Datamover Nodes
• Exclusive for JUPITER
• Integrated into InfiniBand fabric

Pr
el

im
in

ar
y

nu
m

be
rs

, m
ig

ht
 c

ha
ng

e
du

rin
g

in
st

al
la

tio
n

20×

Page 13

JUPITER – STORAGE (EXASTORE)

• Gross Capacity: 308 PB; Net Capacity: 210 PB
• Bandwidth: 1.1 TB/s Write, 1.4 TB/s Read
• 22× IBM SSS6000 Building Blocks (44 servers)
• 2× NDR200 per server
• 7× JBOD enclosures, each with 91x 22 TB Spinning Disks per block
• IBM Storage Scale (aka Spectrum Scale/GPFS)

• Manager and Datamover Nodes
• Exclusive for JUPITER
• Integrated into InfiniBand fabric

In kind contribution from JSC, not part of the JUPITER procurement

Pr
el

im
in

ar
y

nu
m

be
rs

, m
ig

ht
 c

ha
ng

e
du

rin
g

in
st

al
la

tio
n

22
×

Page 14

JUPITER – INTERCONNECT
One Network to Rule Them All

N
D
R

N
D
R
200

L2
sw
itches

01
02

03
04

05
06

07
08

09
10

11
12

13
14

15
16

L1
sw
itches

01
02

03
04

05
06

07
08

09
10

11
12

13
14

15

N
odes

01

03

05

07

09

11
1315

17

19

21

23

25

27

29

31

33

35

37
39 41

43

45

47

49

51

53

01

01

02

03

04

05
0607

08

09

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

01

Booster cells Cluster cell Admin cell

JUPITER – INTERCONNECT
One Network to Rule Them All

NDR

NDR200

L2 switches 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

L1 switches 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Nodes

JUPITER – INTERCONNECT
One Network to Rule Them All

Cluster module switch Booster module switch Admin module switch Cluster node

Booster node Flash storage node Gateway node Storage node

Misc node NDR link NDR200 link

Cluster module switch Booster module switch Admin module switch Cluster node

Booster node Flash storage node Gateway node Storage node

Misc node NDR link NDR200 link

STATUS

POWER TRANSFORMER SUBSTATION AND LINES
Upgrade of transformers 110 kV / 35 kV from 2 x 40 MVA to 2 x 60-80 MVA and upgrade 110kV power line

MODULAR DATA CENTER FOR JUPITER

• Vendor: Eviden
• Area: ~2300 m2

• 1× Datahall (storage, management)
• 7× IT modules (20 racks per module)
• UPS, generator
• Entrance area
• Workshop, warehouse
• 15 × 2.5 MW power stations

MODULAR DATA CENTER FOR JUPITER

CONCRETE FOUNDATION

Page 22

CONCRETE FOUNDATION
Construction of concrete slab 85 m x 42 m x 0.5 m

CONCRETE FOUNDATION
Construction of concrete slab 85 m x 42 m x 0.5 m

MDC SHIPMENT START
10./11.9.2024

Page 25

DATAHALL ARRIVAL
28.10.2024

Page 26

JUPITER INSTALLATION IN ANGERS (EVIDEN FACTORY)

• 10 XH3000 racks, 480 nodes

• Hardware tests and benchmark preparation

• JUPITER Management Server preparation
• Afterwards
• Integration into containers

• Shipment to Jülich
• “Plug in and run”

APPLICATIONS

APPLICATIONS FOR THE JUPITER PROCUREMENT
• Selection criteria
• Current workload
• Future workload
• Relevance
• Balance with other applications
• Domains
• Programming models
• Programming languages
• Profile

• High Scalability up to Exascale

Benchmarks Overview

16 application benchmarks (4 de-selected
for actual procurement)
Cross-section of domains andmethods,
3⇥ AI
7 synthetic benchmarks
Some patterns from 7 Dwarfs

•
De

ns
e
LA

•
Sp

ar
se

LA

•
Sp

ec
tra

l

•
Pa

rt
ic
le

•
St
ru
ct
ur
ed

Gr
id

•
Un

st
ru
ct
ur
ed

Gr
id

•
M
on

te
Ca

rlo

Benchmark Domain Dwarfs
Amber* MD • •
Arbor Neurosci. • • •

Chroma-QCD QCD • • •
GROMACS MD • •

ICON Climate • •
JUQCS QC •
nekRS CFD • • •

ParFlow* Earth Sys. • •
PIConGPU Plasma • •

Quantum Espresso Materials Sci. • • •
SOMA* Polymer Sys. • •

MMoCLIP AI (MM) •
Megatron-LM AI (LLM) •

ResNet* AI (Vision) •
DynQCD QCD • • •
NAStJA Biology • •

Graph500 Graph Graph Traversal (D. 9)
HPCG CG •
HPL LA •
IOR Filesys. Input/Output

LinkTest Network P2P, Topology
OSU Network Message Exchange, DMA

STREAM Memory Regular Access
Member of the Helmholtz Association 2 October 2024 Slide 16 29

Page 29

APPLICATIONS FOR THE JUPITER PROCUREMENT
• Selection criteria
• Current workload
• Future workload
• Relevance
• Balance with other applications
• Domains
• Programming models
• Programming languages
• Profile

• High Scalability up to Exascale

Booster Cluster MSA

Benchmark GPU GPU
High-Scale CPU CPU

Arbor ✓ ✓
Chroma ✓ ✓
Gromacs ✓
ICON ✓
JUQCS ✓ ✓ ✓
nekRS ✓ ✓
ParFlow ✓
PIConGPU ✓ ✓
Quantum ESPRESSO ✓
AI-MMoCLIP ✓
AI-NLP ✓
dynQCD ✓
NAStJA ✓
Graph500 ✓
HPCG ✓ ✓
HPL ✓ ✓
IOR ✓ ✓
LinkTest ✓ ✓ ✓
OSU ✓ ✓ ✓
STREAM ✓ ✓

Page 30

EVALUATION

• Criteria
• Requirements to project planning, etc.
• Technical requirements to overarching design and details
• Performance of applications, benchmarks
• Total cost of ownership (TCO): How much science for money
• Further categories (Synthetic Benchmarks, High-Scaling Applications)

• Quantified evaluation

Page 31

Review Selection Preparation

Hig
h-S
calin

g

Base

L

M

S

T

Raw Suite Descriptions
Scripts Procurement

Te
st

Scale

Evaluate

PAPER AT SC24

00 Month 2018 Page 32

• Paper for Technical Program at SC24
• All benchmarks released as open source
à https://github.com/FZJ-JSC/jubench
(meta-repo)

• Results, discussions, experiences, …

Application-Driven Exascale: The JUPITER
Benchmark Suite

Andreas Herten , Sebastian Achilles , Damian Alvarez , Jayesh Badwaik , Eric Behle , Mathis Bode ,
Thomas Breuer , Daniel Caviedes-Voullième , Mehdi Cherti , Adel Dabah , Salem El Sayed ,

Wolfgang Frings , Ana Gonzalez-Nicolas , Eric B. Gregory , Kaveh Haghighi Mood , Thorsten Hater ,
Jenia Jitsev , Chelsea Maria John , Jan H. Meinke , Catrin I. Meyer , Pavel Mezentsev , Jan-Oliver Mirus ,

Stepan Nassyr , Carolin Penke , Manoel Römmer , Ujjwal Sinha , Benedikt von St. Vieth , Olaf Stein ,
Estela Suarez , Dennis Willsch , Ilya Zhukov

Jülich Supercomputing Centre
Forschungszentrum Jülich

Jülich, Germany

Abstract—Benchmarks are essential in the design of modern
HPC installations, as they define key aspects of system compo-
nents. Beyond synthetic workloads, it is crucial to include real
applications that represent user requirements into benchmark
suites, to guarantee high usability and widespread adoption of a
new system. Given the significant investments in leadership-class
supercomputers of the exascale era, this is even more important
and necessitates alignment with a vision of Open Science and
reproducibility. In this work, we present the JUPITER Bench-
mark Suite, which incorporates 16 applications from various
domains. It was designed for and used in the procurement
of JUPITER, the first European exascale supercomputer. We
identify requirements and challenges and outline the project
and software infrastructure setup. We provide descriptions and
scalability studies of selected applications and a set of key
takeaways. The JUPITER Benchmark Suite is released as open
source software with this work at github.com/FZJ-JSC/jubench.

Index Terms—Benchmark, Procurement, Exascale, System De-
sign, System Architecture, GPU, Accelerator

I. INTRODUCTION

The field of High Performance Computing (HPC) is gov-
erned by the interplay of capability and demand driving each
other forward. During the design and purchase phase of super-
computer procurements for public research, the capability of
a machine is usually assessed not only by theoretical, system-
inherent numbers, but also by effective numbers relating to ac-
tual workloads. These workloads are traditionally benchmark
programs that test specific aspects of the system design — like
the floating-point throughput, memory bandwidth, or internode
latency. While these synthetic benchmarks are well-suited for
the assessment of distinct features, for a more integrated
and realistic perspective, they should be complemented by
application benchmarks. Application benchmarks use state-
of-the-art scientific applications to assess the performance
of integrated designs. Complex application profiles utilize
various types of hardware resources dynamically during the
benchmark’s runtime, showcasing real-world strengths and
limitations of the system.

This paper introduces the JUPITER Benchmark Suite, a
comprehensive collection of 23 benchmark programs metic-
ulously documented and designed to support the procurement
of JUPITER, Europe’s first exascale supercomputer. On top of
7 synthetic benchmarks, 16 application benchmarks were de-
veloped in close collaboration with domain scientists to ensure
relevance and rigor. Additionally, this paper offers valuable
insights into the state-of-the-practice of exascale procurement,
shedding light on the challenges and methodologies involved.

Preparations for the procurement of JUPITER were
launched in early 2022 and finally came to fruition with the
awarding of the contract in October 2023. JUPITER is funded
by the EuroHPC Joint Undertaking (50%), Germany’s Federal
Ministry for Education and Research (25%), and the Ministry
of Culture and Science of the State of North Rhine-Westphalia
of Germany (25%), and is hosted at Jülich Supercomputing
Centre (JSC) of Forschungszentrum Jülich. As part of the
procurement, the benchmark suite was developed to motivate
the system design and evaluate the proposals committed for
the Request for Proposals. The suite focuses on application
benchmarks to ensure high practical usability of the system.
This work presents the JUPITER Benchmark Suite in detail,
highlighting design choices and project setup, describing the
benchmark workloads, and releasing them as open source
software. The suite includes 23 benchmarks across different
domains, each with unique characteristics such as compute-
intensive, memory-intensive, and I/O-intensive workloads. The
applications are grouped into three categories: Base, repre-
senting a mixed base workload for the system, High-Scaling,
highlighting scalability to the full exascale system, and syn-
thetic, determining various key hardware design features. The
benchmark suite represents a first step towards Continuous
Benchmarking to detect system anomalies during the produc-
tion phase of JUPITER.

The main contributions of this paper are:
• An in-depth description of the use of benchmarks in HPC

procurement, including relevant background information.

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

�

	

�0')4

�5

	

�4'24

���5

�

�,420&� ��

���5

�

�:1 ��

��5

�

�!����"���21�

���5

�

�!����"��"#�%�

�	�5

	
�

�

	

������!�
����

���5

	
�

������!�
�	��

��5

���

�$ �"���20376)�

�
�5

�

�)+&6421���

5

��

��2����

		�
5

�

��"6��

�5

�

��
 	 	�

�

	

1).!"

�5

�

��
 	 	�

�&4�/29

�
�5

�

��
 	 	�

���21��$

���5

�

��
 	 	�

 7&1670��534)552

�
5

�

��
 	 	�

!)5�)6

	�

5

	�

��
 	 	�

"���

	
�5

�

!)/&6-8)��70')4�2*��2()5

"
3
)
)
(
7
3

Fig. 2. Overview of relative runtimes of all Base applications on the reference system, JUWELS Booster. Shown at (1, 1) is the execution on the reference
number of nodes with the reference runtime, with the absolute values shown close to the horizontal and vertical axes, respectively. Beyond the reference
execution, strong-scaled relative runtimes (with respect to the reference runtime) on the surrounding number of nodes are given (usually 0.5⇥, 0.75⇥, 1.5⇥,
and 2⇥ the reference; some benchmarks deviate). As an example, consider Arbor: the reference number of nodes (8) is noted at horizontal 1, the reference
runtime of 498 s at vertical 1; further data-points are given for 4 nodes (663 s), 12 nodes (332 s), and 16 nodes (250 s) – 0.5⇥, 1.5⇥, and 2⇥ the reference
number of nodes of 8. See also Table II.

transformer model architecture [74] and leverages various
parallelization techniques and optimizations [75]–[78] through
PyTorch to achieve high hardware utilization with excellent
efficiency. The training of various recent open source GPT-like
models was carried out with Megatron-LM [79], making this
benchmark crucial to assess a system’s capability to handle
disruptive generative AI workloads. The benchmark trains a
175 billion parameter model, converting the usual throughput
metric (tokens per time) to a hypothetical time-to-solution
FOM by training 20 million tokens.

d) MMoCLIP: Contrastive Language-Image Pre-training
(CLIP) [80] is a method that conducts self-supervised learning
on weakly-aligned image-text pairs with open vocabulary
language, resulting in language-vision foundation models. The
approach enables usage of substantially increased datasets,
like web-scale datasets [81], [82]. The OpenCLIP [83], [84]
codebase, an open source implementation of CLIP, enables
efficiently distributed training of CLIP models by using mul-
tiple data parallelism schemes through PyTorch, scaling to
more than a thousand GPUs. Due to its strong transferability
and robustness, OpenCLIP is used in diverse multi-modal
learning approaches and downstream applications [85]–[87],
and efficient training is crucial for the machine learning
community dealing with open, fully reproducible foundation
models.

The MMoCLIP benchmark is curated from OpenCLIP. It
trains an ViT-L-14 model on a synthetic dataset of 3 200 000
image-text pairs and records the total training time as a FOM.

e) Quantum ESPRESSO: Quantum ESPRESSO
(QE) [88]–[90] is an open source, density-functional-theory-
based electronic structure software used both in academia
and industry. QE calculates different material properties
using a plane wave basis set and pseudo-potentials and can
exploit novel accelerators well [91]. The dominant kernel in

QE performs a three-dimensional FFT, which is usually a
memory-bound kernel and is communication-bound for large
systems [91].

For the benchmark suite, the Car-Parrinello Molecular
Dynamics model was chosen. The benchmark is based on
a use case created in the MaX project [92], [93] and does
calculations for a slab of ZrO2 with 792 atoms.

f) NAStJA: The Neoteric Autonomous Stencil code for
Jolly Algorithms (NAStJA) is a massively-parallel simula-
tion framework of biological tissues using a Cellular Potts
Model [94], [95]. This model relies on nearest neighbour
interactions and is parallelized by dividing the overall work-
load into multiple sub-regions, called blocks. Each block is
treated independently by an MPI process, with boundaries
being exchanged. Using NAStJA, tissues composed of thou-
sands to millions of cells can be simulated at subcellular
resolution [96]. As a test case, adhesion-driven cell sorting
is used, a common process in tissue development and segre-
gation [97]. The benchmark investigates the first 5050 Monte
Carlo (MC) steps of a system of size 720⇥ 720⇥ 1152 µm3,
containing roughly 600 000 cells. NAStJA utilizes MPI for
parallelization/distribution and is one of the few CPU-only
benchmarks in the suite. The application exhibits an irregular
memory access pattern at each iteration, which is not suitable
for GPU execution.

2) High-Scaling Benchmarks: In this section, we describe
the five High-Scaling benchmarks in detail.

Figure 3 juxtaposes the weak-scaling behaviours of the
applications over a wide range of node numbers, using the
reference HPC system JUWELS Booster.

a) Arbor: Arbor is a library for simulating biophysically-
realistic neural networks, bridging the gap between point
and nanoscale models [98]. Developed in the HBP [99], it
aims at efficient use of modern HPC hardware behind an

	
 � � 	� �
 �� 	
�

�
	
 	�
�
�'!"*

���

���

��

���

���

���

���

	��

�(
""
!+
(�

���
��

���
� �) ')

�#)'%�����
��������'%(�
�����������
&"$��
���'&���

Fig. 3. Weak scaling efficiency of the five High-Scaling benchmarks over
a wide range of JUWELS Booster node numbers. For JUQCS, two lines
are drawn; one for the computation and one for the communication (see
section IV-A2c).

intuitive interface. Neurons are modelled by morphology, ion
channels, and connections. Arbor is written in C++ with
a Python interface and available under a permissive open
source license. The user-centric description is discretized and
aggregated to optimize data layouts for individual hardware.
At runtime, the cable equation is integrated alternating with a
system of ODEs for the channels. Users model channels via a
domain-specific language that must be compiled for the target
hardware. Communication is performed, concurrently with
time evolution, every n steps, determined by neural delays.
The benchmark is parameterized to fill the GPU memory in
the variants T, S, M, L. To differentiate from point models,
it is weighted heavily towards computation, emphasized by a
sparse connectivity. A complex cell from the Allen Institute
was selected and adapted to random morphologies of fixed
depth [100]. Cells are organized into rings propagating a single
spike. Rings are interconnected to place load on the network
without altering dynamics, yielding a deterministic, scalable
workload. Profiling shows two cost centers: 52% ion channels
and 33% cable equation; hiding communication completely.
The Base version runs on 32 JUWELS Booster nodes, filling
all 4 GPUs’ memory. This was scaled up to the full Booster to
verify efficient resource usage and extrapolated to 1EFLOP.
The number of generated spikes is used for validation.

b) Chroma: Chroma [101] is an all-purpose applica-
tion for LQCD computations. It is compiled on top of the
USQCD software stack [102], which provides LQCD-specific
libraries for communication, data-parallelism, I/O, and, im-
portantly, sparse linear solver libraries optimized for different
architectures. Key libraries used in this benchmark include
QMP for MPI wrapping, QDP-JIT for data-parallelism and
parallel-I/O via QIO, and the GPU-targeted QUDA solver
library [103]. Chroma and the USQCD stack are open source
and community-developed. Chroma is one of the most widely
used LQCD suites and is representative of LQCD codes in
general.

LQCD calculations generally depend heavily on solving
very large, regular, sparse linear systems (dimension 106�109

generally). Due to the regularity of the data and the calculation,
LQCD lends itself to many levels of concurrency.

The Chroma LQCD benchmark in the JUPITER Benchmark
Suite contains the representative benchmarks for the Hybrid
Monte-Carlo (HMC) component of the LQCD simulations.
In the benchmark, a number of HMC update trajectories are
performed using the 3+1 flavours of Clover Wilson fermions
— three light quark flavours with identical mass, and a fourth
flavour with heavier mass — and the Lüscher-Weisz gauge
action. The 4D lattice is initialized with a random SU(3)
element on each link. Checkpointing is disabled by a source
patch to remove the I/O overhead for the calculations. The
benchmark also contains a fix to Chroma, allowing simulation
of 4D lattice volumes greater than 231 and among the largest
LQCD simulations anywhere to date. The benchmark perfor-
mance is sensitive to the decomposition configuration used for
distributing the 4D lattice to different tasks and to the affinity
between the CPU, GPU, NUMA domains, and the network
controller for each task.

The benchmark is validated by comparing the output with
a reference solution with a tolerance of 10�10 for the Base
benchmark and 10�8 for High-Scaling benchmarks.

The relevant metric (FOM) is the total time spent in HMC
updates, excluding the first update, which includes overhead
for tuning QUDA parameters. So a minimum of two updates
must be prescribed.

c) JUQCS: JUQCS is a massively parallel simulator for
universal gate-based Quantum Computers (QCs) [104] written
in Fortran 90 using MPI, OpenMP, and CUDA. During the
past decades, JUQCS has been used to benchmark some of
the largest supercomputers worldwide, including the Sunway
TaihuLight and the K computer [105] as well as JUWELS
Booster [106], and it was part of Google’s quantum supremacy
demonstration [107]. Various versions of JUQCS are available
in binary form as part of a container [108]; a light version with
available sources was created specifically for this benchmark
suite [109]. JUQCS simulates an n-qubit gate-based QC by
iteratively updating a rank-n tensor of 2n complex numbers
(state vector) stored in double precision and distributed over
the supercomputer’s memory. The total available memory
determines the size of the largest QC that can be simulated.
For instance, a universal simulation of n = 45 qubits requires
a little over 16 ⇥ 245 B = 0.5PiB. Many operations require
the transfer of half of all memory, i.e., 2n/2 complex double-
precision numbers, across the network, which can help to
assess the performance of a supercomputer’s communication
network [105], [106]. As Fig. 3 shows, the deviation of JUQCS
w.r.t. the theoretically expected linear scaling (green triangles)
reveals both a drop in performance from intra-node to inter-
node GPU communication (from 1 to 2 nodes) and another
drop when communication enters the large-scale regime at 256
nodes.

All present JUQCS benchmarks simulate successive ap-
plications of a single-qubit quantum gate that requires large

https://github.com/FZJ-JSC/jubench

GH200 TEST NODES

• GH200 Prototype
• 2× Grace-Hopper superchips
• 1 Grace CPU (72 cores), 480 GB LPDDR5X RAM
• 1 H100 GPU
• TDP 700-1000 W

• Slightly different variant compared to JUPITER node
design

Page 33

ENABLEMENT: JEDI, JUREAP

• JEDI: JUPITER test system
• 48 nodes; JUPITER design
🎉 Top 1 Green500!

• Usage
• System management preparations
• Application porting
• JUREAP; Research and Early Access Program

Page 34

Top 1 Green500!

Foto von Robert Wiedemann auf Unsplash
JUPITER Research and Early Access Program

JUREAP
Seeding Exascale in Europe!

jureap@fz-juelich.de • https://www.fz-juelich.de/en/ias/jsc/jupiter/jureap

mailto:jureap@fz-juelich.de
https://www.fz-juelich.de/en/ias/jsc/jupiter/jureap

OVERVIEW

Seite 36

Timeline

Phase 1: Scalability and Performance Evaluation Phase (SPEP)
Phase 2: Porting and Optimizing Phase (POP)
Phase 3: Outstanding Research Phase (ORP)

11/2023
Start of JUREAP

H1/2024
Start of the Scalability and
Performance Evaluation

Phase (SPEP)
Open to all applications

(close 7.10.)

H2/2024
Start of Porting and

Optimizing Phase (POP)
~20 Lighthouse Applications

H1/2025
Start of Outstanding

Research Phase (ORP)
~20 Lighthouse Applications

10/2025
End of JUREAP

H2/2024
Light Track for non-

Lighthouse Applications

Finish installation of JUPITER
(Booster Module)

Start installation of
JUPITER (Booster Module)

Current state:
• GCS Exascale Pioneer Call just closed
• Evaluations ongoing
• Light Track in parallel

GPU STREAM

Page 37

https://github.com/AndiH/CUDA-Cpp-STREAM

NCCL TESTS (GPU-GPU)
By Javad Kasravi / JSC

Page 38

MPTRAC

• Lagrangian particle dispersion model:
atmospheric transport processes
(troposphere/stratosphere)
à volcanic emissions

• Continuously optimized for GPUs
Recently: Significant speedup on A100

• First test on GH200

By Lars Hoffmann / JSC

Page 39

MPTRAC
https://github.com/slcs-jsc/mptrac

• Portable code, but highly optimized implementation

• OpenMP and OpenACC + MPI parallelization

• Recent performance gains: Improving memory accesses and
locality through sorting and improved data layouts.
Collaboration with JSC, NVIDIA Application Lab [1]

• Major benefit on GPUs, but large impact on CPU performance
as well

• Measured on JUWELS Booster and JURECA, with A100 GPUs,
and on H100

• Which gains expected on Grace-Hopper?

• Reading/writing meteorological data from disk: ~flat

• Transferring data between CPU, GPU

257
183

101

31

20

3

92

116

79

0

50

100

150

200

250

300

350

400

A100 H100 PCIe GH200

To
ta

l T
im

e
[s

]

using full CPU socket and 1 GPU

Physics Data Transfers I/O and rest

From reference [1]

• [1] Hoffmann, L., Haghighi Mood, K., Herten, A., Hrywniak, M., Kraus, J., Clemens, J., and Liu, M.: Accelerating Lagrangian transport simulations on graphics
processing units: performance optimizations of MPTRAC v2.6, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2547, 2024.

See also GTC talk by Mathias Wagner

https://www.nvidia.com/en-us/on-demand/session/gtc24-s62337/

FIRST GPU EXPERIENCES (H100)

Page 40

LQCD benchmark: Great mem utilization

0 20 40 60 80 100
Edge length ! (Volume !4

)

0

1

2

3

4

5

B
a
n
d
w

id
th

[T
B

/s
]

Peak HBM Bandwidth

Peak HBM Bandwidth

Peak HBM Bandwidth

Peak HBM Bandwidth

0.0 B 53.8 MB 860 MB 4.35 GB 13.8 GB 33.6 GB

1

LLM benchmark: >2× vs A100

MPTRAC: >2× vs A100

MPTRAC
https://github.com/slcs-jsc/mptrac

• Portable code, but highly optimized implementation

• OpenMP and OpenACC + MPI parallelization

• Recent performance gains: Improving memory accesses and
locality through sorting and improved data layouts.
Collaboration with JSC, NVIDIA Application Lab [1]

• Major benefit on GPUs, but large impact on CPU performance
as well

• Measured on JUWELS Booster and JURECA, with A100 GPUs,
and on H100

• Which gains expected on Grace-Hopper?

• Reading/writing meteorological data from disk: ~flat

• Transferring data between CPU, GPU

257
183

101

31

20

3

92

116

79

0

50

100

150

200

250

300

350

400

A100 H100 PCIe GH200

To
ta

l T
im

e
[s

]

using full CPU socket and 1 GPU

Physics Data Transfers I/O and rest

From reference [1]

• [1] Hoffmann, L., Haghighi Mood, K., Herten, A., Hrywniak, M., Kraus, J., Clemens, J., and Liu, M.: Accelerating Lagrangian transport simulations on graphics
processing units: performance optimizations of MPTRAC v2.6, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2547, 2024.

MAELSTROM AP1: >6× energy efficiency vs. A100

ChASE: >2× vs. A100
across all solvers

ICON: 1.6× vs. A100 in
first benchmark (R2B4)

nekRS: 2.1× vs. A100
for RBC benchmark

Arbor: 1.97× vs. A100
for Busyring benchmark

JUQCS: 2.6× vs. A100
for 31 Qubits

FIRST CPU INVESTIGATIONS (GRACE)

• Focus mostly on GPU currently
• Some first results on Grace hardware
→Very competitive performance, especially wrt TDP (but still early)

Page 41

JUQCS: 1.35× vs. EPYC Rome
7402 for 31 Qubits (2×24 cores)

DynQCD: 1.5× vs. EPYC
Rome 7742 (2×64 cores)
• Best: Grace-Clang, ACfL
• Slightly worse: GCC
• Investigating FMLA

instructions
• (Auto-Vectorization works

well!)

NAStJA:
• 2.3× vs. EPYC Rome 7402

(2×24 cores)
• 5.6× vs Intel Skylake 8168

(2×24 cores)

FLEUR:
• 1.2× vs. Intel Skylake 8168

(2×24 cores, 400 W TDP)
• 0.8× vs. EPYC Rome 7742

(2×64 cores, 450 W TDP)
• 1.5× vs. Intel SPR-HBM

(2×32 cores,
700 W TDP)

NVIDIA GH200

Page 42
<

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
LP
DD
R5

50
0
GB
/s

0

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

1

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

2

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

LP
DD
R5

50
0
GB
/s

3

HB
M
3

40
00
GB
/s

45
0+
45
0
GB
/s

15
0+
15
0
GB
/s

150+150 GB/s

15
0+
15
0
GB
/s

150+150 GB/s150+150GB/s

100+100GB/s

100+100GB/s
100+100GB/s

100+100GB/s

100+100GB/s 100+100GB/s

0

1

2

3

64+64GB/s

64+64 GB/s

64+64 GB/s

64+64 GB/s

20
0+
20
0
Gb
/s

20
0+
20
0
Gb
/s

20
0+
20
0
Gb
/s

20
0+
20
0
Gb
/s

NVIDIA GH200

Page 43

• “Superchip”: CPU and GPU in a package

• 4 × CPU: NVIDIA Grace, 72 cores (4×128b SVE2): ~ 3.6 TFLOP/s FP64;
120 GB 500 GB/s (L1: 64 kB+64 kB; L2: 1 MB; L3 (shared) 117 MB)

• 4 × GPU: NVIDIA Hopper, 132 multiprocessors (128 cores): ~60 TFLOP/s
FP64; 96 GB 4000 GB/s (L1: 256 kB; L2 (shared) 60 MB)

• Memory-consistent connections: CPU-GPU (900 GB/s), GPU-GPU (300
GB/s), CPU-CPU (200 GB/s); NUMA domains accessible

• Package: 680 W shared for CPU+GPU; currently, CPU-focused (max
300 W)

<

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5

500GB/s

0

HBM3
4000GB/s

450+450GB/s

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5
500GB/s

1

HBM3

4000GB/s

450+450GB/s

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5
500GB/s

2

HBM3

4000GB/s

450+450GB/s

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5

500GB/s

3

HBM3
4000GB/s

450+450GB/s

150+150GB/s

150+150
GB/s

150+150 GB/s

150+150
GB/s

150+150
GB/s

100+100
GB/s

100+100
GB/s

100+100
GB/s

100+100
GB/s

100+100
GB/s

100+100
GB/s

0123

64+64
GB/s

64+64
GB/s

64+64
GB/s

64+64
GB/s

200+200 Gb/s200+200Gb/s200+200Gb/s200+200Gb/s

NVIDIA GH200

Page 44
<

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5

500GB/s

0

HBM3
4000GB/s

450+450GB/s

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5
500GB/s

1

HBM3

4000GB/s

450+450GB/s

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5
500GB/s

2

HBM3

4000GB/s

450+450GB/s

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

60 61 62 63 64 65

66 67 68 69 70 71

LPDDR5

500GB/s

3

HBM3
4000GB/s

450+450GB/s

150+150GB/s

150+150
GB/s

150+150 GB/s

150+150
GB/s

150+150
GB/s

100+100
GB/s

100+100
GB/s

100+100
GB/s

100+100
GB/s

100+100
GB/s

100+100
GB/s

0123

64+64
GB/s

64+64
GB/s

64+64
GB/s

64+64
GB/s

200+200 Gb/s200+200Gb/s200+200Gb/s200+200Gb/s

Grace Hopper
Address Translation Service (ATS)

R e m o t e
a c c e s s e s

N
VL

IN
K

C2
C

GRACE
CPU

HOPPER
GPU

C P U
P H Y S I C A L
M E M O RY

Page A

PT
E

A

S y s t e m Pa g e Ta b l e
Tr a n s l a t e s C P U m a l l o c () t o C P U o r G P U

C P U - r e s i d e n t
a c c e s s

G P U - r e s i d e n t
a c c e s s

G P U
P H Y S I C A L
M E M O RY

Page B

PT
E

B

LPDDR5X HBM3

MEMORY PERFORMANCE

Page 44

MEMORY PERFORMANCE

Page 44

GPUS

CPU VS. GPU

Page 48

CPU GPU

CPU VS. GPU

Page 49

CPU GPU H100

Photo by Anthony Ketland on UnsplashPhoto by Shearings Holidays on FlickrPhoto by Mark Lee on Flickr

https://unsplash.com/de/@anthonyketland?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/ein-mann-steht-auf-einem-kleinen-boot-im-wasser-neben-einem-grossen-kreuzfahrtschiff-ZnyIunCZSso?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://www.flickr.com/photos/shearings/13583388025
https://www.flickr.com/photos/pochacco20/39030210/

CPU VS. GPU

ALUALU

ALU ALU
Control

Cache

DRAM

Page 49

DRAM

CPU GPU

CPU VS. GPU

ALUALU

ALU ALU
Control

Cache

DRAM

Page 49

DRAM

CPU GPU

PCIe 4:
32 GB/s

CPU VS. GPU

ALUALU

ALU ALU
Control

Cache

DRAM

Page 49

DRAM

CPU GPU

PCIe 5:
64 GB/s

PCIe 4:
32 GB/s

CPU VS. GPU

ALUALU

ALU ALU
Control

Cache

DRAM

Page 49

DRAM

CPU GPU

NVLink C2C:
900 GB/s

14×

MEMORY

• Physically-different memory spaces
• Transfer memory via CPU-GPU bus
à Bottleneck

Page 54

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

in
du

st
ria

lr
ob

ot
by

Pr
oS

ym
bo

ls
fro

m
N

ou
n

Pr
oj

ec
t(

C
C

 B
Y

3.
0)

https://thenounproject.com/browse/icons/term/industrial-robot/

MEMORY

• Physically-different memory spaces
• Transfer memory via CPU-GPU bus
à Bottleneck

• Transfer: Manual or automatic
Manual: Explicit API methods to move data (in bulk) at well-defined program locations
Automatic: Allocate memory with capable APIs à transfer on demand
• Different levels of automatic-ness
• Different overheads
• GH200: Most converged Unified Memory implementation (hardware, software)

Page 55

ALUALU

ALU ALU
Control

Cache

DRAM DRAMUnified View

in
du

st
ria

lr
ob

ot
by

Pr
oS

ym
bo

ls
, p

ic
k

by
Ph

am
 D

uy
 P

hu
on

g
H

un
g;

 b
ot

h
fro

m
N

ou
n

Pr
oj

ec
t(

C
C

 B
Y

3.
0)

https://thenounproject.com/browse/icons/term/industrial-robot/

GPU OPERATION MODE

Page 56

• Load data to GPU memory
• Load instructions to scheduler
• Execute on multiprocessor
• Retrieve data from GPU memory

Processing Flow
CPU! GPU! CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 29 October 2024 Slide 12 36

GPU OPERATION MODE

Page 57

• Load data to GPU memory
• Load instructions to scheduler
• Execute on multiprocessor
• Retrieve data from GPU memory
• Operation method:
Single Instruction, Multiple Threads
• Mental model: operate with threads on

individual data elements
• Parallel function: kernel<<<,>>>
• Kernel executed on multiprocessor

Processing Flow
CPU! GPU! CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 29 October 2024 Slide 12 36

Flynn’s Taxonomy

Michael Flynn (1966/1972): classification of
computer architectures
Define by number of instructions operating on
data elements
✓

Single
Multiple

◆
⌦
✓
Instruction

Data

◆

SISD Single Instruction, Single Data
MISD Multiple Instructions, Single Data
SIMD Single Instruction, Multiple Data
MIMD Multiple Instructions, Multiple Data
SIMT Single Instruction, Multiple Threads

Pr
oc
es
si
ng

Un
it

SISD

Pr
oc
es
si
ng

Un
its

MISD
Pr
oc
es
si
ng

Un
its

SIMD

Sc
he

du
le
r

SIMT

.. .

Warp

. . .

Warp

. . .

Warp

Member of the Helmholtz Association 29 October 2024 Slide 16 36

THREAD EXECUTION

Page 58

• Explicit for loop à implicit threads
• CPU Core ≅ GPU Multiprocessor
• 32 threads execute in lock-step

(AMD: 64)
• Overlap compute, transfer
• è Expose parallelism in code

Kernel Conversion
Summary

C function with explicit loop
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}
CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 8 April 2024 Slide 51 71

Kernel Conversion
Summary

C function with explicit loop
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}
CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 8 April 2024 Slide 51 71

GPU BLOCK DIAGRAM

Page 59

• Shared L2 Cache
• Building blocks: multiprocessors (80)

GPU BLOCK DIAGRAM

Page 60

• Shared L2 Cache
• Building blocks: multiprocessors (80)

Compute elements for FP64,
FP32, Int, Matrix

GPU BLOCK DIAGRAM

Page 61

• Shared L2 Cache
• Building blocks: multiprocessors (80)

Compute elements for FP64,
FP32, Int, MatrixV100

GPU BLOCK DIAGRAM

Page 62

• 108 multiprocessors
• 1.48 GHz (before: 1.53 GHz)

TC (FP64): 64 FMAs / cycA100

GPU BLOCK DIAGRAM

Page 63

• 132 multiprocessors (PCIe: 114)
• 1.83 GHz

TC (FP64): 2×64 FMAs / cycH100

PICTURES

Page 64

H100A100

PICTURES

00 Month 2018 Page 65

H
10

0
A

10
0

G
H

20
0

M
I3

00
X

PERFORMANCE

• Performance is a matter of precision, type of compute
• Sparsity: 2x

Page 66

FP64 (Vec) FP64 (Matrix) FP32* (Matrix) FP16 (Matrix) Memory
TFLOP/s TB/s

A100 9.7 19.5 156 312 1.6
H100

33.5 67 495 989
3.3

GH200 4

MI300X 82 163 654 1307 5.3

MEMORY PERFORMANCE

Page 67

MEMORY PERFORMANCE

Page 68

AMD MI300A, MI300X

• AMD’s current flagship GPU
• Two variants
• MI300X: Classical GPU; 128 GB HBM3
• MI300A: APU with integrated CPU chiplet

(Zen4, 24 cores); 192 GB HBM3

00 Month 2018 Page 69

MI300X MI300A

AMD MI300A, MI300X

• AMD’s current flagship GPU
• Two variants
• MI300X: Classical GPU; 128 GB HBM3
• MI300A: APU with integrated CPU chiplet

(Zen4, 24 cores); 192 GB HBM3

00 Month 2018 Page 70

MI300X MI300A

NVIDIA BLACKWELL GPU

• Latest NVIDIA GPU, shipping soon™
• Grace-Blackwell GB200: 1 Grace, 2 Blackwell
• Blackwell: Fused GPU pair

Page 71

FP64 (Vec) FP64 (Matrix) FP32* (Matrix) FP16 (Matrix) Memory
TFLOP/s TB/s

A100 9.7 19.5 156 312 1.6
H100

33.5 67 495 989
3.3

GH200 4

B100 45 45 1250 2500 8?
MI300X 82 163 654 1307 5.3

PROGRAMMING GPUS

• Many programming models for GPUs, CPUs
• Different levels of abstraction, portability, performance-attainability, open-ness

Page 72

Many Cores, Many Models SC-W 2023, November 12–17, 2023, Denver, CO, USA

Many Cores, Many Models: GPU Programming Model vs. Vendor
Compatibility Overview

Andreas Herten
Forschungszentrum Jülich

Jülich Supercomputing Centre
Jülich, Germany

a.herten@fz-juelich.de

ABSTRACT
In recent history, GPUs became a key driver of compute perfor-
mance in HPC. With the installation of the Frontier supercomputer,
they became the enablers of the Exascale era; further largest-scale
installations are in progress (Aurora, El Capitan, JUPITER). But
the early-day dominance by NVIDIA and their CUDA program-
ming model has changed: The current HPC GPU landscape features
three vendors (AMD, Intel, NVIDIA), each with native and derived
programming models. The choices are ample, but not all models
are supported on all platforms, especially if support for Fortran is
needed; in addition, some restrictions might apply. It is hard for
scientific programmers to navigate this abundance of choices and
limits. This paper gives a guide by matching the GPU platforms
with supported programming models, presented in a concise table
and further elaborated in detailed comments. An assessment is
made regarding the level of support of a model on a platform.

KEYWORDS
GPU, GPGPU, Programming Models, HPC, AMD, Intel, NVIDIA,
CUDA, HIP, SYCL
ACM Reference Format:
Andreas Herten. 2023. Many Cores, ManyModels: GPU ProgrammingModel
vs. Vendor Compatibility Overview. In Workshops of The International Con-
ference on High Performance Computing, Network, Storage, and Analysis
(SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3624062.3624178

1 INTRODUCTION
Taking the TOP500 list of June 2023 as a reference [10], more than
60 % of the available FlOp/s are delivered by Graphics Processing
Units (GPUs). The devices were first installed in HPC systems in
the mid 2000s and steadily matured over the next decades. The
most-recent culmination came in 2022, when the first Exascale
supercomputer, Frontier at Oak Ridge National Lab, was added
to the TOP500 list, utilizing more than 37 000 GPUs to deliver
1194 PFlOp/s (Rmax) of compute performance – alone delivering
about 20 % of the entire list’s compute performance. Further largest-
scale installations using GPUs are planned or already on the way,
like Aurora (at Argonne National Lab), El Capitan (at Lawrence

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Workshops of
The International Conference on High Performance Computing, Network, Storage, and
Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA, https://doi.org/10.1145/
3624062.3624178.

Livermore National Lab), or JUPITER (at Jülich Supercomputing
Centre).

While the first years of GPU usage in HPC was dominated by
NVIDIA GPUs and NVIDIA’s CUDA programming model, the land-
scape significantly changed in the last years. Frontier utilizes AMD
GPUs (37 888⇥ AMD Radeon Instinct MI250X) and Aurora uses
Intel GPUs (63 744⇥ Intel Data Center GPU Max Series, codename
Ponte Vecchio); also El Capitan will use next-generation AMD GPUs
(AMD Radeon Instinct MI300A). Each GPU platform has a selected
major native programming model: CUDA for NVIDIA, HIP for
AMD, and SYCL for Intel1.They are augmented with further vendor-
or community-driven models, usually presenting higher-level ab-
stractions. Examples are OpenMP and OpenACC as the two major
directive-based models; Kokkos, RAJA, and Alpaka which enable
GPU programming through high-level abstractions for parallel al-
gorithms and data management; and Standard-based parallelism
which utilizes modern features of programming languages them-
selves to access GPUs. The key scientific programming language is
C++ (sometimes programmed in a plain C-style), but also Fortran
is still prevalent in many scientific applications. Also Python has
become a popular choice in recent years [8, 54]; as an even higher-
level, interpreted programming language it relies on backends in
lower-level languages – mostly C/C++ – and rather implements
interfaces.

Although the evolving combinatorial explosion of choices2 is
a good sign for the health of the GPU ecosystem, the field can at
times be hard to navigate – for established GPU developers but
especially for novice users. With the selection made in this paper,
more than 50 routes for programming a GPU device are identified
when no further limitations (pre-)exist. This work gives a guide
into the current GPU programming ecosystem, by categorizing
the individual possibilities in a concise table and explaining each
combination in detail.

The main contributions of this paper are the categories of rating
support of programming models on GPU devices in section 3, the
application in the overview table in Figure 1, and the accompany-
ing list of explanations in section 4, with many links to further
resources.

The paper is structured as follows: In section 3, the six rating
categories are explained in detail and some comments to themethod
are made. In section 4, the core of this paper, the overview table
(Figure 1), is presented and explained with detailed comments for

1Intel bundles their parallel programming infrastructure into oneAPI, which includes –
amongst others – DPC++, their SYCL implementation. Next to SYCL, also OpenMP is
a prominently promoted programming model by Intel.
2GPU platforms ⇥ programming models ⇥ programming languages

Author’s Version — Please Cite DOI 10.1145/3624062.3624178.

Many Cores, Many Models SC-W 2023, November 12–17, 2023, Denver, CO, USA

CUDA HIP SYCL OpenACC OpenMP Standard Kokkos ALPAKA
C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran Python

NVIDIA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AMD 18 19 20 4 21 6 22 23 24 25 26 27 28 14 29 16 30

Intel 31 32 33 34 35 6 36 37 38 39 40 41 42 14 43 16 44

Full vendor support
Indirect, but comprehensive support, by vendor
Vendor support, but not (yet) entirely compre-
hensive

Comprehensive support, but not by vendor
Limited, probably indirect support – but at least
some

No direct support available
C++ C++ (sometimes also C)
Fortran Fortran

Figure 1: Overview table comparing a selection of major GPU programming models with the current state of support by the
three vendors of dedicated HPC GPUs (AMD, Intel, NVIDIA) for C++ and Fortran. See section 3 for more detailed explanations
of the categories.

support for NVIDIA GPUs through CUDA C/C++ is very compre-
hensive. In addition to support through the CUDA toolkit, NVIDIA
GPUs can also be used by Clang, utilizing the LLVM toolchain to
emit PTX code and compile it subsequently. [45]
2 NVIDIA • CUDA • Fortran: CUDA Fortran, a proprietary For-
tran extension by NVIDIA, is supported on NVIDIA GPUs via the
NVIDIA HPC SDK (NVHPC). NVHPC implements most features of
the CUDAAPI in Fortran and is activated through the -cuda switch
in the nvfortran compiler. The CUDA extensions for Fortran are
modeled closely after the CUDA C/C++ definitions. In addition to
creating explicit kernels in Fortran, CUDA Fortran also supports
cuf kernels, a way to let the compiler generate GPU parallel code au-
tomatically. Very recently, CUDA Fortran support was also merged
into Flang, the LLVM-based Fortran compiler. [43]
3 NVIDIA • HIP • C++: HIP programs can directly use NVIDIA
GPUs via a CUDA backend. As HIP is strongly inspired by CUDA,
the mapping is relatively straight-forward; API calls are named
similarly (for example: hipMalloc() instead of cudaMalloc())
and keywords of the kernel syntax are identical. HIP also sup-
ports some CUDA libraries and creates interfaces to them (like
hipblasSaxpy() instead of cublasSaxpy()). To target NVIDIA
GPUs through the HIP compiler (hipcc), HIP_PLATFORM=nvidia
needs to be set in the environment. In order to initially create a HIP
code from CUDA, AMD offers the HIPIFY conversion tool. [4]
4 NVIDIA, AMD • HIP • Fortran: No Fortran version of HIP
exists; HIP is solely a C/C++ model. But AMD offers an extensive
set of ready-made interfaces to the HIP API and HIP and ROCm
libraries with hipfort (MIT-licensed). All interfaces implement C
functionality and CUDA-like Fortran extensions, for example to
write kernels, are available. [5]
5 NVIDIA • SYCL • C++: No direct support for SYCL is available
by NVIDIA, but SYCL can be used on NVIDIA GPUs through multi-
ple venues. First, SYCL can be used throughDPC++, anOpen-Source
LLVM-based compiler project led by Intel. The DPC++ infrastruc-
ture is also available through Intel's commercial oneAPI toolkit
(Intel oneAPI DPC++/C++) as a dedicated plugin. Upstreaming SYCL
support directly into LLVM is an ongoing effort, which started in
2019. Further, SYCL can be used via Open SYCL (previously called
hipSYCL), an independently developed SYCL implementation, us-
ing NVIDIA GPUs either through the CUDA support of LLVM or
the nvc++ compiler of NVHPC. A third popular possibility was the
NVIDIA GPU support in ComputeCpp of CodePlay; though the

product became unsupported in September 2023. In case LLVM
is involved, SYCL implementations can rely on CUDA support in
LLVM, which needs the CUDA toolkit available for the final com-
pilations parts beyond PTX. In order to translate a CUDA code to
SYCL, Intel offers the SYCLomatic conversion tool. [1, 32]
6 NVIDIA, AMD, Intel • SYCL • Fortran: SYCL is a C++-based
programming model (C++17) and by its nature does not support
Fortran. Also, no pre-made bindings are available. [17]
7 NVIDIA • OpenACC • C++: OpenACC C/C++ on NVIDIA
GPUs is supported most extensively through the NVIDIA HPC
SDK. Beyond the bundled libraries, frameworks, and other models,
the NVIDIA HPC SDK also features the nvc/nvc++ compilers, in
which OpenACC support can be enabled with the -acc -gpu. The
support of OpenACC in this vendor-delivered compiler is very
comprehensive, it conforms to version 2.7 of the specification. A
variety of compile options are available to modify the compilation
process. In addition to NVIDIA HPC SDK, good support is also
available in GCC since GCC 5.0, supporting OpenACC 2.6 through
the nvptx architecture. The compiler switch to enable OpenACC
in gcc/g++ is -fopenacc, further options are available. Further,
the Clacc compiler implements OpenACC support into the LLVM
toolchain, adapting the Clang frontend. As a central design aspect, it
translates OpenACC to OpenMP as part of the compilation process.
OpenACC can be activated in a Clacc-clang via -fopenacc, and
further compiler options exist, mostly leveraging OpenMP options.
A recent study by Jarmusch et al. compared these compilers for
coverage of the OpenACC 3.0 specification. [13, 16, 34, 47]
8 NVIDIA • OpenACC • Fortran: Support of OpenACC Fortran
on NVIDIA GPUs is similar to OpenACC C/C++, albeit not identical.
First, NVIDIA HPC SDK supports OpenACC in Fortran through
the included nvfortran compiler, with options like for the C/C++
compilers. In addition, also GCC supports OpenACC through the
gfortran compiler with identical compiler options to the C/C++
compilers. Further, similar to OpenACC support in LLVM for C/C++
through Clacc contributions, the LLVM frontend for Fortran, Flang
(the successor of F18, not classic Flang), supports OpenACC as
well. Support was initially contributed through the Flacc project
and now resides in the main LLVM project. Finally, the HPE Cray
Programming Environment supports OpenACC Fortran; in ftn-
hacc. [9, 16, 47]
9 NVIDIA • OpenMP • C++: OpenMP in C/C++ is supported
on NVIDIA GPUs (Offloading) through multiple venues, similarly

Author’s Version — Please Cite DOI 10.1145/3624062.3624178.

Paper / HTML version at https://go.fzj.de/gpumodels

https://go.fzj.de/gpumodels

SUMMARY

• JUPITER: First European Exascale system; EuroHPC JU, BMBF, MKW-NRW; at JSC
• Booster: 24 000 Grace-Hopper CPU/GPU superchips
• Cluster: SiPearl Rhea1 CPU
• Applications, usability core to the design; large benchmarking suite, JEDI, JUREAP
• GPU: Massive parallel performance, throughput
• Programming: tommorrow

Page 73

Thank you for your attention!

a.herten@fz-juelich.de

Talk features self-created imagery, as well as imagery from colleagues, and from
Eviden, NVIDIA, SiPearl, AMD, IBM, OSM; plus individually marked imagery.

mailto:a.herten@fz-juelich.de

