001     1032256
005     20250203133241.0
024 7 _ |a 10.1080/01431161.2024.2414435
|2 doi
024 7 _ |a 0143-1161
|2 ISSN
024 7 _ |a 1366-5901
|2 ISSN
024 7 _ |a WOS:001343869000001
|2 WOS
037 _ _ |a FZJ-2024-06100
082 _ _ |a 620
100 1 _ |a Pacheco-Labrador, Javier
|0 0000-0003-3401-7081
|b 0
|e Corresponding author
245 _ _ |a Ecophysiological variables retrieval and early stress detection: insights from a synthetic spatial scaling exercise
260 _ _ |a London
|c 2025
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1735814888_31058
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ability to access physiologically driven signals, such as surfacetemperature, photochemical reflectance index (PRI), and suninducedchlorophyll fluorescence (SIF), through remote sensing(RS) are exciting developments for vegetation studies. Accessingthis ecophysiological information requires considering processesoperating at scales from the top-of-the-canopy to the photosystems,adding complexity compared to reflectance index-basedapproaches. To investigate the maturity and knowledge of thegrowing RS community in this area, COST Action CA17134SENSECO organized a Spatial Scaling Challenge (SSC). Challengeparticipants were asked to retrieve four key ecophysiological variablesfor a field each of maize and wheat from a simulated fieldcampaign: leaf area index (LAI), leaf chlorophyll content (Cab), maximumcarboxylation rate (Vcmax,25), and non-photochemicalquenching (NPQ). The simulated campaign data included hyperspectraloptical, thermal and SIF imagery, together with groundsampling of the four variables. Non-parametric methods that combinedmultiple spectral domains and field measurements were usedmost often, thereby indirectly performing the top-of-the-canopy tophotosystem scaling. LAI and Cab were reliably retrieved in mostcases, whereas Vcmax,25 and NPQ were less accurately estimated anddemanded information ancillary to RS imagery. The factors consideredleast by participants were the biophysical and physiologicalcanopy vertical profiles, the spatial mismatch between RS sensors,the temporal mismatch between field sampling and RS acquisition,and measurement uncertainty. Furthermore, few participantsdeveloped NPQ maps into stress maps or provided a deeper analysisof their parameter retrievals. The SSC shows that, despiteadvances in statistical and physically based models, the vegetationRS community should improve how field and RS data are integratedand scaled in space and time. We expect this work will guide newcomersand support robust advances in this research field.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cendrero-Mateo, M. Pilar
|0 0000-0001-5887-7890
|b 1
700 1 _ |a Van Wittenberghe, Shari
|0 0000-0002-5699-0352
|b 2
700 1 _ |a Hernandez-Sequeira, Itza
|0 0000-0002-1623-9337
|b 3
700 1 _ |a Koren, Gerbrand
|0 0000-0002-2275-0713
|b 4
700 1 _ |a Prikaziuk, Egor
|0 0000-0002-7331-7004
|b 5
700 1 _ |a Fóti, Szilvia
|0 0000-0003-3235-0948
|b 6
700 1 _ |a Tomelleri, Enrico
|0 0000-0001-6546-6459
|b 7
700 1 _ |a Maseyk, Kadmiel
|0 0000-0003-3299-4380
|b 8
700 1 _ |a Čereković, Nataša
|0 0000-0002-7195-5280
|b 9
700 1 _ |a Gonzalez-Cascon, Rosario
|0 0000-0003-3468-0967
|b 10
700 1 _ |a Malenovský, Zbyněk
|b 11
700 1 _ |a Albert-Saiz, Mar
|0 0000-0001-5676-3750
|b 12
700 1 _ |a Antala, Michal
|0 0000-0003-1294-9507
|b 13
700 1 _ |a Balogh, János
|0 0000-0003-3211-5120
|b 14
700 1 _ |a Buddenbaum, Henning
|0 0000-0002-0956-5628
|b 15
700 1 _ |a Dehghan-Shoar, Mohammad Hossain
|b 16
700 1 _ |a Fennell, Joseph T.
|0 0000-0001-6874-6667
|b 17
700 1 _ |a Féret, Jean-Baptiste
|0 0000-0002-0151-1334
|b 18
700 1 _ |a Balde, Hamadou
|b 19
700 1 _ |a Machwitz, Miriam
|0 0000-0002-4999-673X
|b 20
700 1 _ |a Mészáros, Ádám
|0 0009-0002-4971-3370
|b 21
700 1 _ |a Miao, Guofang
|0 0000-0001-5532-932X
|b 22
700 1 _ |a Morata, Miguel
|0 0000-0002-0537-6803
|b 23
700 1 _ |a Naethe, Paul
|0 0000-0002-3649-2786
|b 24
700 1 _ |a Nagy, Zoltán
|0 0000-0003-2839-522X
|b 25
700 1 _ |a Pintér, Krisztina
|0 0000-0001-8737-706X
|b 26
700 1 _ |a Pullanagari, R. Reddy
|0 0000-0001-6560-986X
|b 27
700 1 _ |a Rastogi, Anshu
|0 0000-0002-0953-7045
|b 28
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 29
700 1 _ |a Wang, Sheng
|0 0000-0003-3385-3109
|b 30
700 1 _ |a Zhang, Chenhui
|0 0000-0003-3915-6099
|b 31
700 1 _ |a Kopkáně, Daniel
|b 32
773 _ _ |a 10.1080/01431161.2024.2414435
|g p. 1 - 26
|0 PERI:(DE-600)1497529-4
|n 1
|p 443-468
|t International journal of remote sensing
|v 46
|y 2025
|x 0143-1161
856 4 _ |u https://juser.fz-juelich.de/record/1032256/files/Ecophysiological%20variables%20retrieval%20and%20early%20stress%20detection%20insights%20from%20a%20synthetic%20spatial%20scaling%20exercise.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1032256
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 29
|6 P:(DE-Juel1)172711
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2025
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21