001032300 001__ 1032300
001032300 005__ 20241120212350.0
001032300 020__ $$a978-3-95806-752-3
001032300 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06139
001032300 037__ $$aFZJ-2024-06139
001032300 1001_ $$0P:(DE-Juel1)179283$$aJoeris, Jana$$b0$$eCorresponding author
001032300 245__ $$aAbscheidung kolumnarer Wärmedämmschichten mittels Suspensionsplasmaspritzen (SPS) und Plasma Spray – Physical Vapor Deposition (PS-PVD) Prozesse$$f - 2023-05-04
001032300 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2024
001032300 300__ $$avii, 133
001032300 3367_ $$2DataCite$$aOutput Types/Dissertation
001032300 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001032300 3367_ $$2ORCID$$aDISSERTATION
001032300 3367_ $$2BibTeX$$aPHDTHESIS
001032300 3367_ $$02$$2EndNote$$aThesis
001032300 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1732086470_11147
001032300 3367_ $$2DRIVER$$adoctoralThesis
001032300 4900_ $$aReihe Energie & Umwelt / Energy & Environment$$v628
001032300 502__ $$aDissertation, Bochum University, 2023$$bDissertation$$cBochum University$$d2023
001032300 520__ $$aIn this work, columnar thermal barrier coatings are prepared by suspension plasma spraying (SPS) and plasma spray-physical vapor deposition (PS-PVD) process. For industrial applications, increasing the lifetime of the coatings is an important aim. For this purpose, the thermal expansion coefficient of metal and ceramic is equalized by introducing an oxide dispersion strengthened (ODS) layer, which can reduce the radial stresses in the thermal barrier coating. Furthermore, the service life is extended by pre-oxidation of the bond coat with formation of an aluminum oxide layer. At the beginning of the work, the material and process parameters for the coating processes are evaluated. The objective is to produce columnar microstructures that have a high column density. In the SPS process, the microstructure is significantly affected by the feed rate of the suspension. Too high feeding rates increases the porosity of the coating strongly and significantly reduce the deposition efficiency. Columnar structures are then difficult to produce. To deposit columnar structures, the atomization of the suspension and the melting of the agglomerated particles must be optimized. This is achieved by optimizing the plasma gas composition and quantity. For the SPS process, a high column density is achieved when as.sprayed bondcoats with a high number of roughness peaks are used, whereas polished surfaces are required for the PS-PVD process. The evaluated parameters are then used to coat cylinders and thermal cycle samples of IN738 and CMSX-4. Thermal cycling samples are used to investigate the thermal shock resistance of the thermal barrier coatings. In addition to the microstructure of the topcoat, the composition of the bondcoats has an impact on their durability. By using ODS layers, the lifetime of the thermal barrier coating (TBC) can be improved. Promising results can be achieved by pre-oxidation of the bondcoats. By heat-treating the bondcoats before coating the topcoat, a thermally grown oxide (TGO) layer is formed, which makes it possible to increase the lifetime of SPS coatings significantly. This makes it possible for the first time to produce single-layer SPS coatings that have comparable lifetimes to other coating processes. The present work was carried out within the framework of the  Collaborative Research Center SFB/Transregio 103 "From the atom to the turbine blade".
001032300 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
001032300 8564_ $$uhttps://juser.fz-juelich.de/record/1032300/files/Energie_Umwelt_628.pdf$$yOpenAccess
001032300 909CO $$ooai:juser.fz-juelich.de:1032300$$pVDB$$popen_access$$popenaire$$pdnbdelivery$$pdriver
001032300 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
001032300 9141_ $$y2024
001032300 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001032300 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001032300 920__ $$lyes
001032300 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001032300 980__ $$aphd
001032300 980__ $$aVDB
001032300 980__ $$aUNRESTRICTED
001032300 980__ $$abook
001032300 980__ $$aI:(DE-Juel1)IEK-1-20101013
001032300 9801_ $$aFullTexts